Vector potential formulation for the three-dimensional finite element analysis of nonlinear electromechanical problems

Ferroelectroelastic materials exhibit nonlinear behavior when they are subjected to high electromechanical loadings. Using the standard formulation with the scalar potential as electric nodal variable in the nonlinear finite element analysis can lead to a low convergence of the iteration procedures. Therefore the formulation with a vector potential as electric nodal variable is developed, which ensures a positive definite stiffness matrix. Solutions of boundary value problems using the scalar potential formulation lie on a saddle point in the space of the nodal degrees of freedom, whereas solutions for the vector potential formulation are in a minimum. Unfortunately, the latter solutions involving the "curlcurl" operator are non-unique in the three-dimensional case. A Coulomb gauge condition imposed on the electric vector potential improves the convergence behavior of nonlinear problems, and in combination with appropriate boundary conditions, it can enforce unique vector potential solutions. A penalized version of the weak vector potential formulation with the Coulomb gauge is proposed and tested on some numerical examples in ferroelectricity.

[1]  Wolfgang Seemann,et al.  Finite element modeling of piezoelectric materials under electromechanical loading , 2005 .

[2]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[3]  Chad M. Landis,et al.  Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics , 2002 .

[4]  D. Munz,et al.  On a non-linear finite element method for piezoelectric structures made of hysteretic ferroelectric ceramics , 2000 .

[5]  R. A. Nicolaides,et al.  Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints , 1997 .

[6]  Jaroslav Mackerle,et al.  Smart materials and structures: FEM and BEM simulations a bibliography (1997-1999) , 2001 .

[7]  Guglielmo Rubinacci,et al.  Solution of three dimensional eddy current problems by integral and differential methods , 1988 .

[8]  Chad M. Landis,et al.  A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics , 2002 .

[9]  K. Bathe,et al.  An Iterative Finite Element Procedure for the Analysis of Piezoelectric Continua , 1995 .

[10]  Albrecht C. Liskowsky,et al.  Finite Element Modeling of the Ferroelectroelastic Material Behavior in Consideration of Domain Wall Motions , 2005 .

[11]  An incomplete gauge formulation for 3D nodal finite-element magnetostatics , 1992 .

[12]  J. Coulomb Finite elements three dimensional magnetic field computation , 1981 .

[13]  M. Kamlah,et al.  Finite Element Modeling of Polarization Rotation Around an Elongated Elliptic Cavity , 2004 .

[14]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[15]  K. Preis,et al.  On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents , 1989 .

[16]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[17]  Albrecht C. Liskowsky,et al.  On a vector potential formulation for 3D electromechanical finite element analysis , 2005 .

[18]  Norman A. Fleck,et al.  Multi-axial electrical switching of a ferroelectric: theory versus experiment , 2001 .

[19]  G. Henneberger,et al.  Calculation of the 3D nonlinear eddy current field in moving conductors and its application to braking systems , 1996 .

[20]  James D. Lee,et al.  Fully coupled non‐linear analysis of piezoelectric solids involving domain switching , 2003 .

[21]  Sang-joo Kim,et al.  A finite element model for rate-dependent behavior of ferroelectric ceramics , 2002 .

[22]  M. L. Brown Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies , 1980 .

[23]  Norman A. Fleck,et al.  A constitutive model for ferroelectric polycrystals , 1999 .

[24]  Nesbitt W. Hagood,et al.  Hybrid finite element model for phase transitions in nonlinear electromechanically coupled material , 1997, Smart Structures.

[25]  K. Y. Sze,et al.  Nonlinear fracture analysis of piezoelectric ceramics by finite element method , 2001 .

[26]  C. Hom,et al.  A finite element method for electrostrictive ceramic devices , 1996 .

[27]  C. Lynch,et al.  Finite element analysis of cracks in ferroelectric ceramic materials , 1999 .

[28]  Chad M. Landis,et al.  A new finite‐element formulation for electromechanical boundary value problems , 2002 .

[29]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .

[30]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .