A Study of Thermodynamic and Elastic Properties of Nanosized Diamond Single Crystals by the Classical Molecular Dynamics Method

[1]  V. Kushch Atomistic vs. continuum models of nanoporous elastic solid: Stress fields, size-dependent effective stiffness and surface constants , 2022, Mechanics of Materials.

[2]  S. Gierlotka,et al.  Surface free energy of diamond nanocrystals - a molecular dynamics study of its size dependence. , 2021, Physical chemistry chemical physics : PCCP.

[3]  S. Stoupin,et al.  Thermal expansion coefficient of diamond in a wide temperature range , 2019, Diamond and Related Materials.

[4]  Tjark Heitmann,et al.  Young's moduli of carbon materials investigated by various classical molecular dynamics schemes , 2017, 1707.02179.

[5]  Nigel A. Marks,et al.  Graphitization of amorphous carbons: A comparative study of interatomic potentials , 2016 .

[6]  S. Zhang,et al.  A low-surface energy carbon allotrope: the case for bcc-C6. , 2015, Physical chemistry chemical physics : PCCP.

[7]  M. Robbins,et al.  AIREBO-M: a reactive model for hydrocarbons at extreme pressures. , 2015, The Journal of chemical physics.

[8]  C. Manfredotti,et al.  The (100), (111) and (110) surfaces of diamond: an ab initio B3LYP study , 2014 .

[9]  James P. Sethna,et al.  The potential of atomistic simulations and the knowledgebase of interatomic models , 2011 .

[10]  D. Broido,et al.  Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene , 2010, 1003.2236.

[11]  L. Pizzagalli,et al.  An environment-dependent interatomic potential for silicon carbide: calculation of bulk properties, high-pressure phases, point and extended defects, and amorphous structures , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Aidan P Thompson,et al.  General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. , 2009, The Journal of chemical physics.

[13]  Young-Han Shin,et al.  A modified embedded-atom method interatomic potential for Germanium , 2008 .

[14]  V. V. Danilenko,et al.  On the history of the discovery of nanodiamond synthesis , 2004 .

[15]  S. Russo,et al.  Development of an improved Stillinger-Weber potential for tetrahedral carbon using ab initio (Hartree-Fock and MP2) methods , 2002 .

[16]  L. Ostrovskaya,et al.  Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films , 2002 .

[17]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[18]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[19]  Hafner,et al.  Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. , 1996, Physical review. B, Condensed matter.

[20]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[21]  T. Halicioǧlu Calculation of surface energies for low index planes of diamond , 1991 .

[22]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[23]  M. Yin,et al.  Structural theory of graphite and graphitic silicon , 1984 .

[24]  H. J. Mcskimin,et al.  Elastic Moduli of Diamond as a Function of Pressure and Temperature , 1972 .

[25]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[26]  W. D. Harkins Energy Relations of the Surface of Solids I. Surface Energy of the Diamond , 1942 .

[27]  Misis,et al.  Surface energy of diamond and graphite , 2018 .

[28]  Larry A. Curtiss,et al.  Molecular Dynamics Simulations of Nanodiamond Graphitization , 2010 .