Unmixing fMRI with Independent Component Analysis Using ICA to Characterize High-Dimensional fMRI Data in a Concise Manner.

—Lord ByronIndependent component analysis (ICA) is a statistical methodused to discover hidden factors (sources or features) from a setof measurements or observed data such that the sources aremaximally independent. Typically, it assumes a generativemodel where observations are assumed to be linear mixturesof independent sources, and unlike principal component analy-sis (PCA), which uncorrelates the data, ICA works with high-er-order statistics to achieve independence. An intuitive example of ICA can be given by a scatter-plot oftwo independent signals

[1]  G. Glover,et al.  Physiological noise in oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[2]  C. F. Beckmann,et al.  Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.

[3]  J. Pekar,et al.  A brief introduction to functional MRI , 2006, IEEE Engineering in Medicine and Biology Magazine.

[4]  R. A. Choudrey FLEXIBLE BAYESIAN INDEPENDENT COMPONENT ANALYSIS FOR BLIND SOURCE SEPARATION , 2001 .

[5]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[6]  Andreas Bartels,et al.  Brain dynamics during natural viewing conditions—A new guide for mapping connectivity in vivo , 2005, NeuroImage.

[7]  Vince D. Calhoun,et al.  Complex ICA for fMRI analysis: performance of several approaches , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[8]  T. Sejnowski,et al.  Analysis and visualization of single‐trial event‐related potentials , 2001, Human brain mapping.

[9]  R. Henkelman,et al.  High quality zoomed MR images. , 1989, Journal of computer assisted tomography.

[10]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[11]  Godfrey D Pearlson,et al.  Source density‐driven independent component analysis approach for fMRI data , 2005, Human brain mapping.

[12]  V. Calhoun,et al.  Aberrant localization of synchronous hemodynamic activity in auditory cortex reliably characterizes schizophrenia , 2004, Biological Psychiatry.

[13]  Vince D. Calhoun,et al.  Independent Component Analysis Applied to fMRI Data: A Generative Model for Validating Results , 2004, J. VLSI Signal Process..

[14]  T Adali,et al.  A weighted least‐squares algorithm for estimation and visualization of relative latencies in event‐related functional MRI , 2000, Magnetic resonance in medicine.

[15]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[16]  Rainer Goebel,et al.  Spatial independent component analysis of functional MRI time‐series: To what extent do results depend on the algorithm used? , 2002, Human brain mapping.

[17]  A Hyvarinen,et al.  SURVEY OF INDEPENDENT COMPONENT ANALYSIS , 1999 .

[18]  S. Amari,et al.  CRITERIA FOR THE SIMULTANEOUS BLIND EXTRACTION OF ARBITRARY GROUPS OF SOURCES , 2001 .

[19]  Dietmar Cordes,et al.  Comparison of independent component analysis and conventional hypothesis-driven analysis for clinical functional MR image processing. , 2002, AJNR. American journal of neuroradiology.

[20]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  Martin J. McKeown,et al.  Acute and persistent pain modulation of attention-related anterior cingulate fMRI activations , 2005, Pain.

[22]  J. Pekar,et al.  A method for making group inferences from functional MRI data using independent component analysis , 2001, Human brain mapping.

[23]  Lars Kai Hansen,et al.  An ICA algorithm for analyzing multiple data sets , 2002, Proceedings. International Conference on Image Processing.

[24]  K Friston,et al.  Spatial , Temporal , and Spatiotemporal IndependentComponent Analysis of fMRI , 2007 .

[25]  Markus Svensén,et al.  ICA of fMRI Group Study Data , 2002, NeuroImage.

[26]  John G. Neuhoff,et al.  Spatiotemporal Pattern of Neural Processing in the Human Auditory Cortex , 2002, Science.

[27]  J. Pekar,et al.  Alcohol Intoxication Effects on Simulated Driving: Exploring Alcohol-Dose Effects on Brain Activation Using Functional MRI , 2004, Neuropsychopharmacology.

[28]  Wei Lu,et al.  Eliminating indeterminacy in ICA , 2003, Neurocomputing.

[29]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[30]  J. Pekar,et al.  fMRI Activation in a Visual-Perception Task: Network of Areas Detected Using the General Linear Model and Independent Components Analysis , 2001, NeuroImage.

[31]  T. Sejnowski,et al.  Human Brain Mapping 6:368–372(1998) � Independent Component Analysis of fMRI Data: Examining the Assumptions , 2022 .

[32]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Stephen M. Smith,et al.  Investigating the intrinsic dimensionality of FMRI data for ICA , 2001, NeuroImage.

[34]  Wei Lu,et al.  ICA with Reference , 2006, Neurocomputing.

[35]  Vincent J Schmithorst,et al.  Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data , 2004, Journal of magnetic resonance imaging : JMRI.

[36]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[37]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[38]  Tulay Adali,et al.  A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks. , 2004, Magnetic resonance imaging.

[39]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[40]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[41]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[42]  V D Calhoun,et al.  Spatial and temporal independent component analysis of functional MRI data containing a pair of task‐related waveforms , 2001, Human brain mapping.

[43]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[44]  V. Roychowdhury,et al.  NON-PARAMETRIC ICA , 2001 .

[45]  L. K. Hansen,et al.  Independent component analysis of functional MRI: what is signal and what is noise? , 2003, Current Opinion in Neurobiology.

[46]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[47]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[48]  Andreas Jung,et al.  An introduction to a new data analysis tool: Independent Component Analysis , 2002 .

[49]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[50]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[51]  Max Welling,et al.  A Constrained EM Algorithm for Independent Component Analysis , 2001, Neural Computation.

[52]  J. Pekar,et al.  Different activation dynamics in multiple neural systems during simulated driving , 2002, Human brain mapping.

[53]  Vince D. Calhoun,et al.  Comparison of blind source separation algorithms for FMRI using a new Matlab toolbox: GIFT , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[54]  Ole Winther,et al.  Analysis of functional neuroimages using ICA with adaptive binary sources , 2002, Neurocomputing.

[55]  V D Calhoun,et al.  Independent component analysis of fMRI data in the complex domain , 2002, Magnetic resonance in medicine.

[56]  Rainer Goebel,et al.  Cortex-based independent component analysis of fMRI time series. , 2004 .

[57]  Nikos A. Vlassis,et al.  Efficient source adaptivity in independent component analysis , 2001, IEEE Trans. Neural Networks.

[58]  M. Denckla,et al.  Performance on color tasks in kindergarten children. , 1972, Cortex; a journal devoted to the study of the nervous system and behavior.

[59]  S. Amari,et al.  Flexible Independent Component Analysis , 1998, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378).

[60]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[61]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[62]  C. F. Beckmann,et al.  Artefact detection in FMRI data using independent component analysis , 2000, NeuroImage.

[63]  M. D’Esposito,et al.  Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. , 1997, NeuroImage.

[64]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[65]  Didier G. Leibovi An introduction to Multiway Methods for Multi-Subject fMRI experiment , 2001 .

[66]  T. Adali,et al.  Ieee Workshop on Machine Learning for Signal Processing Semi-blind Ica of Fmri: a Method for Utilizing Hypothesis-derived Time Courses in a Spatial Ica Analysis , 2022 .

[67]  T. Sejnowski,et al.  Single-Trial Variability in Event-Related BOLD Signals , 2002, NeuroImage.

[68]  James V. Stone,et al.  Spatiotemporal Independent Component Analysis of Event-Related fMRI Data Using Skewed Probability Density Functions , 2002, NeuroImage.

[69]  C N Chen,et al.  Quadrature detection in the laboratory frame , 1984, Magnetic resonance in medicine.