The whistling potentiality of an orifice in a confined flow using an energetic criterion

Using a two-source method, the scattering matrices of 10 sharp-edged thin orifices are measured under different subsonic flow conditions. The data are analysed in terms of net acoustical energy balance: the potential whistling frequency range is defined as the one associated with acoustical energy production. A Strouhal number describing the maximum whistling potentiality is found to be equal to 0.2-0.35, based on the orifice thickness and the orifice jet velocity. It appears to depend on the Reynolds number and on the ratio of orifice to pipe diameters. Tests are performed to compare theoretically and experimentally the potential whistling frequency to the actual whistling frequency. They are found to coincide within the measurement uncertainty.

[1]  D. C. Gibson,et al.  Interaction of induced sound with flow past a square leading edged plate in a duct , 1979 .

[2]  E. Naudascher,et al.  Self-Sustained Oscillations of Impinging Free Shear Layers , 1979 .

[3]  Chih-Ming Ho,et al.  Dynamics of an impinging jet. Part 1. The feedback phenomenon , 1981, Journal of Fluid Mechanics.

[4]  A. Hirschberg,et al.  A Primitive Approach to Aeroacoustics , 2002 .

[5]  R. Blevins Applied Fluid Dynamics Handbook , 1984 .

[6]  Samir Ziada,et al.  Flow-Induced Vibrations in Power and Process Plant Components—Progress and Prospects , 2000 .

[7]  A. B. C. Anderson,et al.  A Jet‐Tone Orifice Number for Orifices of Small Thickness‐Diameter Ratio , 1954 .

[8]  Mats Åbom,et al.  Aero-Acoustics of Flow Duct Singularities at Low Mach Numbers , 2006 .

[9]  A. Billon Etude expérimentale des sons auto-entretenus produits par un jet issu d'un conduit et heurtant une plaque fendue , 2003 .

[10]  J. G.C.,et al.  AEROACOUSTIC RESPONSE OF A SLIT-SHAPED DIAPHRAGM IN A PIPE AT LOW HELMHOLTZ NUMBER , 2 : UNSTEADY RESULTS , 2001 .

[11]  Samir Ziada,et al.  Self-excited resonances of two side-branches in close proximity , 1992 .

[12]  I. E. Idel'cik Memento des Pertes de Charge , 1999 .

[13]  Y. Aurégan,et al.  Quasisteady aero-acoustic response of orifices. , 2001, The Journal of the Acoustical Society of America.

[14]  Yves Aurégan,et al.  Failures in the discrete models for flow duct with perforations: an experimental investigation , 2003 .

[15]  Jfh Jan Willems,et al.  Helmholtz-like resonator self-sustained oscillations, part 2 : detailed flow measurements and numerical simulations , 2003 .

[16]  William K. Blake,et al.  The Development of Contemporary Views of Flow-Tone Generation , 1986 .

[17]  D. G. Crighton,et al.  The jet edge-tone feedback cycle; linear theory for the operating stages , 1992, Journal of Fluid Mechanics.

[18]  F. Fahy,et al.  Mechanics of flow-induced sound and vibration , 1989 .

[19]  Mats Åbom,et al.  Measurement of the scattering-matrix of acoustical two-ports , 1991 .

[20]  A. Anderson Vortex‐Ring Structure‐Transition in a Jet Emitting Discrete Acoustic Frequencies , 1956 .

[21]  C. Morfey Acoustic energy in non-uniform flows , 1971 .

[22]  P. Testuda,et al.  Noise generated by cavitating single-hole and multi-hole orifices in a water pipe , 2007 .

[23]  D. Rockwell Oscillations of impinging shear layers , 1983 .

[24]  Jfh Jan Willems,et al.  Helmholtz-Like Resonator Self-Sustained Oscillations, Part 1: Acoustical Measurements and Analytical Models , 2003 .

[25]  M. K. Au-Yang,et al.  Flow - induced vibration of power and process plant components , 2001 .

[26]  David K. Holger,et al.  Experiments on the Fluid Mechanics of Whistling , 1971 .

[27]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[28]  A Avraham Hirschberg,et al.  Aeroacoustic response of a slit-shaped diaphragm in a pipe at low Helmholtz number, 2 : Unsteady results , 2001 .

[29]  Michael S. Howe,et al.  Hydrodynamics and sound , 2006 .

[30]  H. Levin On the radiation of sound from an unflanged circular pipe , 1948 .

[31]  Turgut Sarpkaya,et al.  A critical review of the intrinsic nature of vortex-induced vibrations , 2004 .

[32]  Neville H Fletcher,et al.  Air flow and sound generation in musical wind instruments , 1979 .

[33]  P. Moussou,et al.  Vortex-Shedding of a Multi-Hole Orifice Synchronized to an Acoustic Cavity in a PWR Water Piping System , 2003 .

[34]  A Avraham Hirschberg,et al.  Self-sustained aero-acoustic pulsations in gas transport systems: Experimental study of the influence of closed side branches , 1991 .

[35]  FLUCTUATIONS OF VORTICITY AND ENTROPY AS SOURCES OF ACOUSTICAL EXERGY , 1998 .

[36]  Philippe Lafon,et al.  Aeroacoustical coupling in a ducted shallow cavity and fluid/structure effects on a steam line , 2003 .

[37]  Y. Aurégan,et al.  Determination of the acoustical energy dissipation / production potentiality from the acoustical transfer functions of a multiport , 2009 .

[38]  J. Schwinger,et al.  On the Radiation of Sound from an Unflanged Circular Pipe , 1948 .

[39]  A. B. C. Anderson Metastable Jet‐Tone States of Jets from Sharp‐Edged, Circular, Pipe‐Like Orifices , 1955 .

[40]  Yasuhiro Saito,et al.  Unstable Cavitation Behavior in a Circular-Cylindrical Orifice Flow , 2002 .

[41]  A. B. C. Anderson,et al.  Structure and Velocity of the Periodic Vortex‐Ring Flow Pattern of a Primary Pfeifenton (Pipe Tone) Jet , 1955 .

[42]  A. B. C. Anderson A Circular‐Orifice Number Describing Dependency of Primary Pfeifenton Frequency on Differential Pressure, Gas Density, and Orifice Geometry , 1953 .