Three-Hilbert-Space Formulation of Quantum Mechanics
暂无分享,去创建一个
[1] V. Buslaev,et al. Equivalence of unstable anharmonic oscillators and double wells , 1993 .
[2] Dorje C Brody,et al. Complex extension of quantum mechanics. , 2002, Physical review letters.
[3] A. Mostafazadeh. Time-dependent pseudo-Hermitian Hamiltonians defining a unitary quantum system and uniqueness of the metric operator , 2007, 0706.1872.
[4] Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.
[5] Miloslav Znojil,et al. Strong-coupling expansions for the -symmetric oscillators , 1998 .
[6] A. Mostafazadeh. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.
[7] J. Williams. Operators similar to their adjoints , 1969 .
[8] C. Bender,et al. PT-symmetric quantum mechanics , 1998, 2312.17386.
[9] Carl M. Bender,et al. Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.
[10] M. Znojil,et al. MHD α2-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator , 2005, math-ph/0501069.
[11] C. Bender,et al. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.
[12] M. Znojil. On the Role of the Normalization Factors $\kappa_n$ and of the Pseudo-Metric ${\cal P} \neq {\cal P}^\dagger$ in Crypto-Hermitian Quantum Models , 2007, 0710.4432.
[13] Ali Mostafazadeh,et al. Pseudo-Hermitian Representation of Quantum Mechanics , 2008, 0810.5643.
[14] A. Mostafazadeh,et al. Propagation of electromagnetic waves in linear media and pseudo-hermiticity , 2007, physics/0703080.
[15] A. Fring,et al. Time evolution of non-Hermitian Hamiltonian systems , 2006, quant-ph/0604014.
[16] H. Jones. Scattering from localized non-Hermitian potentials , 2007, 0707.3031.
[17] A. Mostafazadeh. Pseudo-Hermitian Quantum Mechanics , 2008 .
[18] Hilbert space structures on the solution space of Klein-Gordon type evolution equations , 2002, math-ph/0209014.
[19] F. Scholtz,et al. Quasi-Hermitian operators in quantum mechanics and the variational principle , 1992 .
[20] E. Davies,et al. Linear Operators and their Spectra , 2007 .
[21] M. Znojil. Discrete -symmetric models of scattering , 2008, 0806.2019.
[22] Scattering in PT-symmetric quantum mechanics , 2006, quant-ph/0606129.
[23] H. Feshbach,et al. Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles , 1958 .
[24] M. Znojil. Time-dependent version of crypto-Hermitian quantum theory , 2008, 0809.2874.
[25] R. Tateo,et al. Bethe Ansatz equations , and reality properties in PT-symmetric quantum mechanics , 2022 .
[26] A. Mostafazadeh,et al. Quantum mechanics of Proca fields , 2008, 0805.1651.
[27] Daniel F. Styer,et al. Nine formulations of quantum mechanics , 2002 .
[28] A. Messiah. Quantum Mechanics , 1961 .
[29] Thermodynamics of Pseudo-Hermitian Systems in Equilibrium , 2007 .
[30] Which operator generates time evolution in Quantum Mechanics , 2007, 0711.0535.
[31] Carl M. Bender,et al. Anharmonic oscillator , 1973 .
[32] Quantum knots , 2008, 0802.1318.
[33] M. Znojil. Identification of observables in quantum toboggans , 2008, 0803.0403.
[34] R. Tateo,et al. The ODE/IM correspondence , 2001, hep-th/0703066.
[35] 渋谷 泰隆. Global theory of a second order linear ordinary differential equation with a polynomial coefficient , 1975 .
[36] E. Caliceti,et al. Perturbation theory of odd anharmonic oscillators , 1980 .
[37] C. Bender,et al. Analytic continuation of eigenvalue problems , 1993 .