LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II

This article develops nonparametric inference procedures for estimation and testing problems for means on manifolds. A central limit theorem for Frechet sample means is derived leading to an asymptotic distribution theory of intrinsic sample means on Riemannian manifolds. Central limit theorems are also obtained for extrinsic sample means w.r.t. an arbitrary embedding of a differentiable manifold in a Euclidean space. Bootstrap methods particularly suitable for these problems are presented. Applications are given to distributions on the sphere S d (directional spaces), real projective space RP N-1 (axial spaces), complex projective space CP k-2 (planar shape spaces) w.r.t. Veronese-Whitney embeddings and a three-dimensional shape space Σ 4 3 .

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  Hsien-Chtjng Wang,et al.  TWO-POINT HOMOGENEOUS SPACES , 1952 .

[3]  S. Smale Generalized Poincare's Conjecture in Dimensions Greater Than Four , 1961 .

[4]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[5]  F. W. Warner THE CONJUGATE LOCUS OF A RIEMANNIAN MANIFOLD. , 1965 .

[6]  Isometric imbeddings of compact symmetric spaces , 1968 .

[7]  Shôshichi Kobayashi Transformation groups in differential geometry , 1972 .

[8]  B. Efron Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .

[9]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[10]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[11]  H. Ziezold On Expected Figures and a Strong Law of Large Numbers for Random Elements in Quasi-Metric Spaces , 1977 .

[12]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[13]  J. Ghosh,et al.  ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION , 1978 .

[14]  Rudolf Beran,et al.  Exponential Models for Directional Data , 1979 .

[15]  C. R. Rao,et al.  Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .

[16]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[17]  G. S. Watson Statistics on Spheres , 1983 .

[18]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[19]  M. J. Prentice A distribution-free method of interval estimation for unsigned directional data , 1984 .

[20]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[21]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[22]  R. Beran Prepivoting to reduce level error of confidence sets , 1987 .

[23]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[24]  Second Order and $L^p$-Comparisons between the Bootstrap and Empirical Edgeworth Expansion Methodologies , 1989 .

[25]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[26]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[27]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[28]  P. Hall The Bootstrap and Edgeworth Expansion , 1992 .

[29]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[30]  N. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[31]  J. Kent The Complex Bingham Distribution and Shape Analysis , 1994 .

[32]  D. Cox,et al.  Inference and Asymptotics , 1994 .

[33]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[34]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[35]  José Manuel Corcuera,et al.  INTRINSIC ANALYSIS OF STATISTICAL ESTIMATION , 1995 .

[36]  Kanti V. Mardia,et al.  Shape changes in the plane for landmark data , 1995 .

[37]  How to look at objects in a five-dimensional shape space: looking at geodesics , 1995, Advances in Applied Probability.

[38]  F. Ruymgaart,et al.  Asymptotic Behavior of Sample Mean Direction for Spheres , 1996 .

[39]  H. Hendriks,et al.  Mean Location and Sample Mean Location on Manifolds , 1998 .

[40]  Nicholas I. Fisher,et al.  Improved pivotal methods for constructing confidence regions with directional data , 1996 .

[41]  C. Small The statistical theory of shape , 1996 .

[42]  K. Mardia,et al.  Consistency of Procrustes Estimators , 1997 .

[43]  Paul Dupuis,et al.  Variational problems on ows of di eomorphisms for image matching , 1998 .

[44]  N. Fisher,et al.  Nonparametric comparison of mean directions or mean axes , 1998 .

[45]  H. Le,et al.  ON THE CONSISTENCY OF PROCRUSTEAN MEAN SHAPES , 1998 .

[46]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[47]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[48]  K. Mardia,et al.  Projective Shape Analysis , 1999 .

[49]  V. Patrangenaru,et al.  NEW LARGE SAMPLE AND BOOTSTRAP METHODS ON SHAPE SPACES IN HIGH LEVEL ANALYSIS OF NATURAL IMAGES , 2001 .

[50]  H. Le,et al.  Locating Fréchet means with application to shape spaces , 2001, Advances in Applied Probability.

[51]  Hans-Paul Schwefel,et al.  A comprehensive introduction , 2002 .

[52]  Anuj Srivastava,et al.  Monte Carlo extrinsic estimators of manifold-valued parameters , 2002, IEEE Trans. Signal Process..

[53]  R. Bhattacharya,et al.  Nonparametic estimation of location and dispersion on Riemannian manifolds , 2002 .