Effective Strong Dimension, Algorithmic Information, and Computational Complexity
暂无分享,去创建一个
Jack H. Lutz | John M. Hitchcock | Elvira Mayordomo | Krishna B. Athreya | K. Athreya | J. H. Lutz | J. M. Hitchcock | E. Mayordomo
[1] Abraham Lempel,et al. Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.
[2] Claus-Peter Schnorr,et al. The process complexity and effective random tests. , 1972, STOC.
[3] Ludwig Staiger,et al. A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal Prediction , 1998, Theory of Computing Systems.
[4] L. Staiger. How Much can You Win when Your Adversary is Handicapped , 2000 .
[5] William I. Gasarch,et al. Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.
[6] F. Hausdorff. Dimension und äußeres Maß , 1918 .
[7] W. Fitch. Random sequences. , 1983, Journal of molecular biology.
[8] Jack H. Lutz,et al. Finite-State Dimension , 2001, ICALP.
[9] P. Levy. Théorie de l'addition des variables aléatoires , 1955 .
[10] C. Schnorr. Zufälligkeit und Wahrscheinlichkeit , 1971 .
[11] John M. Hitchcock. Fractal dimension and logarithmic loss unpredictability , 2003, Theor. Comput. Sci..
[12] Jack H. Lutz,et al. The dimensions of individual strings and sequences , 2002, Inf. Comput..
[13] Boris Ryabko,et al. The Complexity and Effectiveness of Prediction Algorithms , 1994, J. Complex..
[14] Jack H. Lutz,et al. Equivalence of Measures of Complexity Classes , 1997, STACS.
[15] 只木 孝太郎. A Generalization of Chaitin's Halting Probability Ω and Halting Self-Similar Sets , 2001 .
[16] Jack H. Lutz. Resource-bounded measure , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).
[17] D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups , 1984 .
[18] Juris Hartmanis,et al. On Hausdorff and Topological Dimensions of the Kolmogorov Complexity of the Real Line , 1994, J. Comput. Syst. Sci..
[19] Elvira Mayordomo,et al. Effective Hausdorff dimension , 2001, FotFS.
[20] C. Schnorr. A Survey of the Theory of Random Sequences , 1977 .
[21] Jacob Ziv,et al. Coding theorems for individual sequences , 1978, IEEE Trans. Inf. Theory.
[22] Elvira Mayordomo,et al. A Kolmogorov complexity characterization of constructive Hausdorff dimension , 2002, Inf. Process. Lett..
[23] Lance Fortnow,et al. Prediction and dimension , 2002, J. Comput. Syst. Sci..
[24] Frank Stephan,et al. Hausdorff dimension in exponential time , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.
[25] K. Falconer. Techniques in fractal geometry , 1997 .
[26] R. Daniel Mauldin,et al. Measure and dimension functions: measurability and densities , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[27] Gregory J. Chaitin,et al. A recent technical report , 1974, SIGA.
[28] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[29] Sebastiaan Terwijn,et al. Resource Bounded Randomness and Weakly Complete Problems , 1994, Theor. Comput. Sci..
[30] Michiel van Lambalgen,et al. Von Mises' Definition of Random Sequences Reconsidered , 1987, J. Symb. Log..
[31] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.
[32] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[33] Stephen A. Fenner. Gales and supergales are equivalent for defining constructive Hausdorff dimension , 2002, ArXiv.
[34] Claus-Peter Schnorr,et al. A unified approach to the definition of random sequences , 1971, Mathematical systems theory.
[35] C. Tricot. Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.
[36] John M. Hitchcock. Correspondence Principles for Effective Dimensions , 2004, Theory of Computing Systems.
[37] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[38] Ludwig Staiger,et al. Kolmogorov Complexity and Hausdorff Dimension , 1989, FCT.
[39] John M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension , 2002, Theor. Comput. Sci..
[40] Jean-Luc Ville. Étude critique de la notion de collectif , 1939 .
[41] Kohtaro Tadaki,et al. A Generalization of Chaitin's Halting Probability \Omega and Halting Self-Similar Sets , 2002, ArXiv.
[42] Jack H. Lutz. Almost Everywhere High Nonuniform Complexity , 1992, J. Comput. Syst. Sci..
[43] S. Kakutani. On Equivalence of Infinite Product Measures , 1948 .
[44] Max L. Warshauer,et al. Lecture Notes in Mathematics , 2001 .
[45] Jack H. Lutz,et al. Dimension in complexity classes , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.