Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory.

The distinctive desirable features, both mathematically and physically meaningful, for all partially contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated. The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced. The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 1(1)A(')-2(1)A(') conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 1(1)A(1) to 2(1)A(1) electronic transition in cis-1,3-butadiene. The new theory has several advantages compared to those of well-established approaches, such as second order multi-configuration quasi-degenerate perturbation theory and multi-state-second order complete active space perturbation theory. The analysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the high-level modeling of small to large molecular systems.

[1]  K. Freed,et al.  Convergence studies of the effective valence shell Hamiltonian for correlation energies of the fluorine atom and its ions using third order quasidegenerate many‐body perturbation theory , 1981 .

[2]  M. Alfimov,et al.  Ab Initio Study of the Structure, Spectral, Ionochromic, and Fluorochromic Properties of Benzoazacrown-Containing Dyes as Potential Optical Molecular Sensors , 2011 .

[3]  Hans-Joachim Werner,et al.  Multireference perturbation theory for large restricted and selected active space reference wave functions , 2000 .

[4]  Markus P. Fülscher,et al.  Multiconfigurational perturbation theory: Applications in electronic spectroscopy , 1996 .

[5]  Kenneth G. Dyall,et al.  The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function , 1995 .

[6]  K. Bravaya,et al.  Modeling photoabsorption of the asFP595 chromophore. , 2008, The journal of physical chemistry. A.

[7]  I. Polyakov,et al.  The effect of oxidation on the electronic structure of the green fluorescent protein chromophore. , 2010, The Journal of chemical physics.

[8]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[9]  Kimihiko Hirao,et al.  Multireference Møller—Plesset perturbation theory for high-spin open-shell systems , 1992 .

[10]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[11]  Haruyuki Nakano,et al.  MCSCF reference quasidegenerate perturbation theory with Epstein—Nesbet partitioning , 1993 .

[12]  R. Cimiraglia,et al.  Multireference perturbation theory can predict a false ground state. , 2010, Physical chemistry chemical physics : PCCP.

[13]  B. Kirtman Variational Form of Van Vleck Degenerate Perturbation Theory with Particular Application to Electronic Structure Problems , 1968 .

[14]  M. Hanrath On the concepts of connectivity, separability, and consistency: An illustration by partitioned diagrams and numerical probing , 2009 .

[15]  A. Zaitsevskii,et al.  Multi-partitioning quasidegenerate perturbation theory. A new approach to multireference Møller-Plesset perturbation theory , 1995 .

[16]  D Mukherjee,et al.  Molecular Applications of a Size-Consistent State-Specific Multireference Perturbation Theory with Relaxed Model-Space Coefficients. , 1999, The journal of physical chemistry. A.

[17]  Michael J. Frisch,et al.  A direct MP2 gradient method , 1990 .

[18]  Mathieu Lewin,et al.  Solutions of the Multiconfiguration Equations in Quantum Chemistry , 2004 .

[19]  Ingvar Lindgren,et al.  The Rayleigh-Schrodinger perturbation and the linked-diagram theorem for a multi-configurational model space , 1974 .

[20]  Mathieu Lewin On the computation of excited states with MCSCF methods , 2008 .

[21]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[22]  K. Freed,et al.  Potential energy curve for isomerization of N2H2 and C2H4 using the improved virtual orbital multireference Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[23]  Toshifumi Mori,et al.  Dynamic electron correlation effect on conical intersections in photochemical ring-opening reaction of cyclohexadiene: MS-CASPT2 study , 2009 .

[24]  Kimihiko Hirao,et al.  Multireference Møller–Plesset perturbation treatment of potential energy curve of N2 , 1992 .

[25]  B. Roos,et al.  The ozone ring closure as a test for multi-state multi-configurational second order perturbation theory (MS-CASPT2) , 2008 .

[26]  A. Udvarhelyi,et al.  Photoreaction in BLUF Receptors: Proton‐coupled Electron Transfer in the Flavin‐Gln‐Tyr System † , 2011, Photochemistry and photobiology.

[27]  J. Malrieu,et al.  The use of effective Hamiltonians for the treatment of avoided crossings. II. Nearly diabatic potential curves , 1984 .

[28]  M. Alfimov,et al.  Ab initio study of phosphorescent emitters based on rare-earth complexes with organic ligands for organic electroluminescent devices. , 2011, The journal of physical chemistry. A.

[29]  Haruyuki Nakano,et al.  Relativistic quasidegenerate perturbation theory with four-component general multiconfiguration reference functions. , 2006, The Journal of chemical physics.

[30]  B. Hudson,et al.  Resonance Raman spectroscopy of butadiene: Demonstration of a 2 1Ag state below the 1 1Bu V state , 1985 .

[31]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[32]  J. Ivanic Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. II. Application to oxoMn(salen) and N2O4 , 2003 .

[33]  K. Brueckner,et al.  Many-Body Problem for Strongly Interacting Particles. II. Linked Cluster Expansion , 1955 .

[34]  A. Nemukhin,et al.  Modeling reaction routes from rhodopsin to bathorhodopsin , 2010, Proteins.

[35]  H. Weidenmüller,et al.  Perturbation theory for the effective interaction in nuclei , 1973 .

[36]  J. Malrieu,et al.  Improved version of a local contracted configuration interaction of singles and doubles with partial inclusion of triples and quadruples. , 2010, The Journal of chemical physics.

[37]  B. Brandow Formal theory of effective π‐electron hamiltonians , 1979 .

[38]  K. Freed,et al.  Prediction of electronic structure of organic radicaloid anions using efficient, economical multireference gradient approach. , 2011, Physical chemistry chemical physics : PCCP.

[39]  Alexander V. Nemukhin,et al.  Modeling of the structure and electronic spectra of green fluorescent protein chromophore , 2008 .

[40]  H. Nakano,et al.  Efficient implementation of relativistic and non-relativistic quasidegenerate perturbation theory with general multiconfigurational reference functions , 2007 .

[41]  Björn O. Roos,et al.  Multiconfigurational second-order perturbation theory: A test of geometries and binding energies , 1993 .

[42]  U. Kaldor,et al.  Diagrammatic many-body perturbation theory for general model spaces , 1979 .

[43]  K. Freed,et al.  Improved virtual orbital multireference Møller-Plesset study of the ground and excited electronic states of protonated acetylene, C2H3+. , 2008, The Journal of chemical physics.

[44]  M. Hoffmann,et al.  Explication and revision of generalized Van Vleck perturbation theory for molecular electronic structure , 2002 .

[45]  Bernard Kirtman,et al.  Simultaneous calculation of several interacting electronic states by generalized Van Vleck perturbation theory , 1981 .

[46]  R. Cimiraglia,et al.  n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants , 2002 .

[47]  Kimihiko Hirao,et al.  Intruder state avoidance multireference Møller–Plesset perturbation theory , 2002, J. Comput. Chem..

[48]  Eric Cancès,et al.  Computing electronic structures: A new multiconfiguration approach for excited states , 2006, J. Comput. Phys..

[49]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[50]  A. Kuppermann,et al.  Electronic spectroscopy of s‐trans 1,3‐butadiene by electron impact , 1973 .

[51]  Kimihiko Hirao,et al.  State-specific multireference Møller—Plesset perturbation treatment for singlet and triplet excited states, ionized states and electron attached states of H2O , 1993 .

[52]  A. Zaitsevskii,et al.  Multiconfigurational second-order perturbative methods: Overview and comparison of basic properties , 1995 .

[53]  O. Christiansen,et al.  Gas phase absorption studies of photoactive yellow protein chromophore derivatives. , 2009, The journal of physical chemistry. A.

[54]  J. Ivanic Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. I. Method , 2003 .

[55]  Hans-Joachim Werner,et al.  Internally contracted multiconfiguration-reference configuration interaction calculations for excited states , 1992 .

[56]  S. Chattopadhyay,et al.  Molecular applications of state-specific multireference perturbation theory to HF, H2O, H2S, C2, and N2 molecules. , 2008, The Journal of chemical physics.

[57]  L. T. Redmon,et al.  Quasidegenerate perturbation theories. A canonical van Vleck formalism and its relationship to other approaches , 1980 .

[58]  Per E. M. Siegbahn,et al.  The direct configuration interaction method with a contracted configuration expansion , 1977 .

[59]  K. Freed,et al.  The improved virtual orbital-complete active space configuration interaction method, a “packageable” efficient ab initio many-body method for describing electronically excited states , 2001 .

[60]  Todd J Martínez,et al.  Optimizing conical intersections without derivative coupling vectors: application to multistate multireference second-order perturbation theory (MS-CASPT2). , 2008, The journal of physical chemistry. B.

[61]  S. Chattopadhyay,et al.  State-specific multi-reference perturbation theories with relaxed coefficients: molecular applications , 2002 .

[62]  Stephen R. Langhoff,et al.  Full configuration‐interaction study of the ionic–neutral curve crossing in LiF , 1988 .

[63]  K. Freed,et al.  Analysis of abinitio effective valence shell Hamiltonian calculations using third order quasidegenerate many‐body perturbation theory , 1981 .

[64]  K. Freed,et al.  The Algebra of Effective Hamiltonians and Operators: Exact Operators , 2007 .

[65]  I. Lindgren A coupled-cluster approach to the many-body perturbation theory for open-shell systems , 2009 .

[66]  L. Serrano-Andrés,et al.  Computation of conical intersections by using perturbation techniques. , 2005, The Journal of chemical physics.

[67]  Uttam Sinha Mahapatra,et al.  Development of a size-consistent state-specific multireference perturbation theory with relaxed model-space coefficients , 1999 .

[68]  R. Cimiraglia,et al.  The low-lying states of the scandium dimer. , 2010, The Journal of chemical physics.

[69]  H. Weidenmüller,et al.  The effective interaction in nuclei and its perturbation expansion: An algebraic approach , 1972 .

[70]  K. Bravaya,et al.  Gas-phase spectroscopy of protonated 3-OH kynurenine and argpyrimidine. comparison of experimental results to theoretical modeling. , 2007, The journal of physical chemistry. A.

[71]  Alexander V. Nemukhin,et al.  Accurate modeling of the S0-S1 photo-absorption in biological chromophores , 2007, SPIE BiOS.

[72]  Haruyuki Nakano,et al.  Quasidegenerate perturbation theory with multiconfigurational self‐consistent‐field reference functions , 1993 .

[73]  Celestino Angeli,et al.  A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. , 2004, The Journal of chemical physics.

[74]  S. Chattopadhyay,et al.  Application of improved virtual orbital based multireference methods to N2, LiF, and C4H6 systems. , 2008, The Journal of chemical physics.

[75]  J. Stephen Binkley,et al.  Theoretical models incorporating electron correlation , 2009 .

[76]  K. Bravaya,et al.  An opsin shift in rhodopsin: retinal S0-S1 excitation in protein, in solution, and in the gas phase. , 2007, Journal of the American Chemical Society.

[77]  Luis Serrano-Andrés,et al.  The multi-state CASPT2 method , 1998 .

[78]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[79]  Kimihiko Hirao,et al.  Quasi‐degenerate perturbation theory with general multiconfiguration self‐consistent field reference functions , 2002, J. Comput. Chem..

[80]  R. Cimiraglia,et al.  An application of second-order n-electron valence state perturbation theory to the calculation of excited states , 2004 .

[81]  Ernest R. Davidson,et al.  A theoretical investigation of some low-lying singlet states of 1,3-butadiene , 1987 .

[82]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[83]  Kimihiko Hirao,et al.  Multireference Møller-Plesset method , 1992 .

[84]  K. Hirao,et al.  Theoretical study of valence and Rydberg excited states of benzene revisited 1 Dedicated to Professo , 1998 .

[85]  J. P. Doering,et al.  100 eV electron impact study of 1,3‐butadiene , 1981 .

[86]  E. Davidson,et al.  The reduced model space method in multireference second-order perturbation theory , 1998 .

[87]  K. Hirao,et al.  Transition state barrier height for the reaction H2CO→H2+CO studied by multireference Mo/ller–Plesset perturbation theory , 1997 .

[88]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[89]  P. Surján,et al.  Comparison of low-order multireference many-body perturbation theories. , 2005, The Journal of chemical physics.

[90]  N. M. Hugenholtz Perturbation theory of large quantum systems , 1957 .

[91]  B. Roos,et al.  Theoretical study of the electronic spectra ofcis-1,3,5-hexatriene andcis-1,3-butadiene , 1994 .

[92]  Celestino Angeli,et al.  N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant , 2001 .

[93]  Manoj Kumar,et al.  Theoretical analysis of the diradical nature of adenosylcobalamin cofactor-tyrosine complex in B12-dependent mutases: inspiring PCET-driven enzymatic catalysis. , 2010, The journal of physical chemistry. B.

[94]  B. Brandow Linked-Cluster Expansions for the Nuclear Many-Body Problem , 1967 .

[95]  I. Polyakov,et al.  Potential Energy Landscape of the Electronic States of the GFP Chromophore in Different Protonation Forms: Electronic Transition Energies and Conical Intersections. , 2010, Journal of chemical theory and computation.

[96]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .