On a conjecture about Parikh matrices

Based on Salomaa's characterization of M-equivalence, Atanasiu conjectured that a certain natural generalization of ME-equivalence solves the injectivity problem of Parikh matrices for the ternary alphabet. This paper refutes his conjecture but continues to study the interesting proposed Thue system. Characterization of certain irreducible elementary transformations under this system is obtained. Furthermore, these transformations are further scrutinized in terms of their replaceability by simpler ones.

[1]  Wen Chean Teh On Core Words and the Parikh Matrix Mapping , 2015, Int. J. Found. Comput. Sci..

[2]  Ion Petre,et al.  Parikh matrices and amiable words , 2008, Theor. Comput. Sci..

[3]  Wen Chean Teh Parikh Matrices and Parikh Rewriting Systems , 2016, Fundam. Informaticae.

[4]  Wen Chean Teh,et al.  Core words and Parikh matrices , 2015, Theor. Comput. Sci..

[5]  Adrian Atanasiu Binary amiable Words , 2007, Int. J. Found. Comput. Sci..

[6]  Traian-Florin Serbanuta,et al.  Injectivity of the Parikh Matrix Mappings Revisited , 2006, Fundam. Informaticae.

[7]  Virgil Nicolae Serbanuta On Parikh Matrices, Ambiguity, and PRINTS , 2009, Int. J. Found. Comput. Sci..

[8]  Arto Salomaa On the Injectivity of Parikh Matrix Mappings , 2005, Fundam. Informaticae.

[9]  Rohit Parikh,et al.  On Context-Free Languages , 1966, JACM.

[10]  Arto Salomaa,et al.  On an Extension of the Parikh Mapping , 2000 .

[11]  Adrian Atanasiu Parikh Matrix Mapping and Amiability Over a Ternary Alphabet , 2014, Discrete Mathematics and Computer Science.

[12]  Carlos Martín-Vide,et al.  On the Injectivity of the Parikh Matrix Mapping , 2002, Fundam. Informaticae.

[13]  Gwénaël Richomme,et al.  Some characterizations of Parikh matrix equivalent binary words , 2004, Inf. Process. Lett..

[14]  Arto Salomaa,et al.  A sharpening of the Parikh mapping , 2001, RAIRO Theor. Informatics Appl..

[15]  Wen Chean Teh Parikh Matrices and Strong M-Equivalence , 2016, Int. J. Found. Comput. Sci..

[16]  Adrian Atanasiu Parikh Matrices, Amiability and Istrail Morphism , 2010, Int. J. Found. Comput. Sci..

[17]  Arto Salomaa Criteria for the matrix equivalence of words , 2010, Theor. Comput. Sci..