Shared Inputs, Entrainment, and Desynchrony in Elliptic Bursters: From Slow Passage to Discontinuous Circle Maps

What input signals will lead to synchrony vs. desynchrony in a group of biological oscillators? This question connects with both classical dynamical systems analyses of entrainment and phase locking and with emerging studies of stimulation patterns for controlling neural network activity. Here, we focus on the response of a population of uncoupled, elliptically bursting neurons to a common pulsatile input. We extend a phase reduction from the literature to capture inputs of varied strength, leading to a circle map with discontinuities of various orders. In a combined analytical and numerical approach, we apply our results to both a normal form model for elliptic bursting and to a biophysically-based neuron model from the basal ganglia. We find that, depending on the period and amplitude of inputs, the response can either appear chaotic (with provably positive Lyaponov exponent for the associated circle maps), or periodic with a broad range of phase-locked periods. Throughout, we discuss the critical underlying mechanisms, including slow-passage effects through Hopf bifurcation, the role and origin of discontinuities, and the impact of noise

[1]  G. Ermentrout,et al.  Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I. , 1984 .

[2]  Alexandre Pouget,et al.  Dynamical Constraints on Using Precise Spike Timing to Compute in Recurrent Cortical Networks , 2008, Neural Computation.

[3]  C. Gardiner Stochastic Methods: A Handbook for the Natural and Social Sciences , 2009 .

[4]  Kevin K. Lin,et al.  Entrainment and Chaos in a Pulse-Driven Hodgkin-Huxley Oscillator , 2005, SIAM J. Appl. Dyn. Syst..

[5]  P. Tass,et al.  Cumulative and after-effects of short and weak coordinated reset stimulation: a modeling study , 2009, Journal of neural engineering.

[6]  J. Rubin,et al.  Effects of noise on elliptic bursters , 2004 .

[7]  Charles J. Wilson,et al.  Activity Patterns in a Model for the Subthalamopallidal Network of the Basal Ganglia , 2002, The Journal of Neuroscience.

[8]  David Terman,et al.  Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks , 2007, Journal of Computational Neuroscience.

[9]  Robert J Calin-Jageman,et al.  Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. , 2007, Journal of neurophysiology.

[10]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[11]  J. Rinzel,et al.  Dissection of a model for neuronal parabolic bursting , 1987, Journal of mathematical biology.

[12]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[13]  Eugene M. Izhikevich,et al.  Phase Equations for Relaxation Oscillators , 2000, SIAM J. Appl. Math..

[14]  Eugene M. Izhikevich,et al.  Subcritical Elliptic Bursting of Bautin Type , 1999, SIAM J. Appl. Math..

[15]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[16]  Leon Glass,et al.  BIFURCATIONS IN A DISCONTINUOUS CIRCLE MAP: A THEORY FOR A CHAOTIC CARDIAC ARRHYTHMIA , 1995 .

[17]  Andrey Shilnikov,et al.  Polyrhythmic synchronization in bursting networking motifs. , 2008, Chaos.

[18]  H. L. Bryant,et al.  Spike initiation by transmembrane current: a white‐noise analysis. , 1976, The Journal of physiology.

[19]  J. DING,et al.  Parallel Computation of Invariant Measures , 2001, Ann. Oper. Res..

[20]  Nancy Kopell,et al.  Synchronization and Transient Dynamics in the Chains of Electrically Coupled Fitzhugh--Nagumo Oscillators , 2001, SIAM J. Appl. Math..

[21]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[22]  Peter Ashwin,et al.  Within-Burst Synchrony Changes for Coupled Elliptic Bursters , 2009, SIAM J. Appl. Dyn. Syst..

[23]  Christian Hauptmann,et al.  Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: a modeling study , 2007, Expert review of medical devices.

[24]  A. Winfree The geometry of biological time , 1991 .

[25]  Robert E. O'Malley,et al.  Analyzing Multiscale Phenomena Using Singular Perturbation Methods , 1999 .

[26]  John Rinzel,et al.  Bursting phenomena in a simplified Oregonator flow system model , 1982 .

[27]  J. Keener Chaotic behavior in piecewise continuous difference equations , 1980 .

[28]  Laura Rocchi,et al.  A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson’s disease , 2009, Journal of Computational Neuroscience.

[29]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[30]  J. D. Hunter,et al.  Resonance effect for neural spike time reliability. , 1998, Journal of neurophysiology.

[31]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[32]  Matthew D. Johnson,et al.  Pallidal stimulation that improves parkinsonian motor symptoms also modulates neuronal firing patterns in primary motor cortex in the MPTP-treated monkey , 2009, Experimental Neurology.

[33]  Eric Shea-Brown,et al.  Winding Numbers and Average Frequencies in Phase Oscillator Networks , 2006, J. Nonlinear Sci..

[34]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[35]  Yasuhiro Tsubo,et al.  Synchrony of limit-cycle oscillators induced by random external impulses. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Stephen Coombes,et al.  Neuronal population dynamics with post inhibitory rebound: A reduction to piecewise linear discontinuous circle maps , 1996 .

[37]  J. Rinzel,et al.  The slow passage through a Hopf bifurcation: delay, memory effects, and resonance , 1989 .

[38]  L. Glass,et al.  UNIVERSALITY AND SELF-SIMILARITY IN THE BIFURCATIONS OF CIRCLE MAPS , 1985 .

[39]  M. A. Masino,et al.  Bursting in Leech Heart Interneurons: Cell-Autonomous and Network-Based Mechanisms , 2002, The Journal of Neuroscience.

[40]  J Bélair,et al.  Periodic pulsatile stimulation of a nonlinear oscillator , 1986, Journal of mathematical biology.

[41]  Jonathan E. Rubin,et al.  High Frequency Stimulation of the Subthalamic Nucleus Eliminates Pathological Thalamic Rhythmicity in a Computational Model , 2004, Journal of Computational Neuroscience.

[42]  Xiao-Jiang Feng,et al.  Optimal deep brain stimulation of the subthalamic nucleus—a computational study , 2007, Journal of Computational Neuroscience.

[43]  J. Guckenheimer,et al.  Isochrons and phaseless sets , 1975, Journal of mathematical biology.

[44]  A. Boyarsky,et al.  Laws of Chaos : Invariant Measures and Dynamical Systems in One Dimension , 1997 .

[45]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[46]  M R Guevara,et al.  Bifurcation analysis of a periodically forced relaxation oscillator: differential model versus phase-resetting map. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  R. Pérez,et al.  Bifurcation and chaos in a periodically stimulated cardiac oscillator , 1983 .

[48]  Arkady Pikovsky,et al.  Synchronization and desynchronization of self-sustained oscillators by common noise. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION , 1995 .

[50]  Soumitro Banerjee,et al.  Border-Collision bifurcations in One-Dimensional Discontinuous Maps , 2003, Int. J. Bifurc. Chaos.

[51]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[52]  Eric Shea-Brown,et al.  Reliability of Coupled Oscillators , 2009, J. Nonlinear Sci..

[53]  Stephen John Hogan,et al.  Dynamics of a piecewise linear map with a gap , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  S. Baer,et al.  Asymptotic analysis of noise sensitivity in a neuronal burster , 2002, Bulletin of mathematical biology.

[55]  D. Terman,et al.  Reducing Neuronal Networks to Discrete Dynamics. , 2008, Physica D. Nonlinear phenomena.

[56]  João Pedro Hespanha,et al.  Event-based minimum-time control of oscillatory neuron models , 2009, Biological Cybernetics.

[57]  Eugene M. Izhikevich,et al.  “Subcritical Elliptic Bursting of Bautin Type ” (Izhikevich (2000b)). The following , 2022 .

[58]  Matjaž Perc,et al.  Chaos in temporarily destabilized regular systems with the slow passage effect , 2006 .

[59]  Christopher K. R. T. Jones,et al.  Multiple-Time-Scale Dynamical Systems , 2012 .

[60]  P. Bressloff,et al.  Bursting: The genesis of rhythm in the nervous system , 2005 .

[61]  Paul C. Bressloff,et al.  Neuronal dynamics based on discontinuous circle maps , 1990 .

[62]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[63]  Steven M Baer,et al.  Slow acceleration and deacceleration through a Hopf bifurcation: power ramps, target nucleation, and elliptic bursting. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  J. Rubin,et al.  Geometric Singular Perturbation Analysis of Neuronal Dynamics , 2002 .

[65]  Rachel Kuske Probability Densities for Noisy Delay Bifurcations , 1999 .

[66]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[67]  Khashayar Pakdaman,et al.  An Analysis of the Reliability Phenomenon in the FitzHugh-Nagumo Model , 2004, Journal of Computational Neuroscience.