Latent Class Models for Conjoint Analysis

Conjoint analysis was introduced to market researchers in the early 1970s as a means to understand the importance of product and service attributes and price as predictors of consumer preference (e.g., Green and Rao 1971; Green and Wind 1973). Since then it has received considerable attention in academic research (see Green and Srinivasan 1978, 1990 for exhaustive reviews; and Louviere 1994 for a review of the behavioral foundations of conjoint analysis). By systematically manipulating the product or service descriptions shown to a respondent with an experimental design, conjoint analysis allows decision-makers to understand consumer preferences in an enormous range of potential market situations (see Cattin and Wittink 1982; Wittink and Cattin 1989; and Wittink, Vriens, and Burhenne 1994 for surveys of industry usage of conjoint analysis).

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  Vithala R. Rao,et al.  Conjoint Measurement- for Quantifying Judgmental Data , 1971 .

[3]  D. Wittink,et al.  Commercial Use of Conjoint Analysis: A Survey , 1982 .

[4]  Wagner A. Kamakura,et al.  Issues in the estimation and application of latent structure models of choice , 1994 .

[5]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[6]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[7]  Paul E. Green,et al.  Segmenting Markets with Conjoint Analysis , 1991 .

[8]  Gary J. Russell,et al.  A Probabilistic Choice Model for Market Segmentation and Elasticity Structure , 1989 .

[9]  Kohsuke Ogawa,et al.  An Approach to Simultaneous Estimation and Segmentation in Conjoint Analysis , 1987 .

[10]  M. Ben-Akiva,et al.  Multi-featured products and services: analysing pricing and bundling strategies , 1998 .

[11]  David A. Aaker Strategic Marketing Management , 2001 .

[12]  M. Wedel,et al.  Metric Conjoint Segmentation Methods: A Monte Carlo Comparison , 1996 .

[13]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[14]  Steven H. Cohen,et al.  Market segmentation with choice-based conjoint analysis , 1995 .

[15]  Jordan J. Louviere,et al.  13 Conjoint Preference Elicitation Methods in the Broader Context of Random Utility Theory Preference , 2001 .

[16]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[17]  Rabikar Chatterjee,et al.  Joint Segmentation on Distinct Interdependent Bases with Categorical Data , 1996 .

[18]  Russell I. Haley,et al.  Developing Effective Communications Strategy: A Benefit Segmentation Approach , 1985 .

[19]  Michael R. Hagerty,et al.  The Cost of Simplifying Preference Models , 1986 .

[20]  Yoram Wind,et al.  Issues and Advances in Segmentation Research , 1978 .

[21]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[22]  Greg M. Allenby,et al.  Using Extremes to Design Products and Segment Markets , 1995 .

[23]  Yoram Wind,et al.  Multiattribute decisions in marketing : a measurement approach , 1973 .

[24]  Peter E. Rossi,et al.  Marketing models of consumer heterogeneity , 1998 .

[25]  Henrik Sattler,et al.  Commercial Use of Conjoint Analysis , 2008 .

[26]  Jordan J. Louviere,et al.  Conjoint Preference Elicitation Methods in the Broader Context of Random Utility Theory Preference Elicitation Methods , 2007 .

[27]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[28]  Peter E. Rossi,et al.  The Value of Purchase History Data in Target Marketing , 1996 .

[29]  William L. Moore,et al.  Levels of Aggregation in Conjoint Analysis: An Empirical Comparison , 1980 .

[30]  D. Titterington Some recent research in the analysis of mixture distributions , 1990 .

[31]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[32]  Michel Wedel,et al.  Latent class metric conjoint analysis , 1992 .

[33]  Mark J. Garratt,et al.  Efficient Experimental Design with Marketing Research Applications , 1994 .

[34]  D. McFadden The Choice Theory Approach to Market Research , 1986 .

[35]  P. Damlen,et al.  Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .

[36]  Dick R. Wittink,et al.  Commercial use of conjoint analysis in Europe: Results and critical reflections , 1994 .

[37]  H. Akaike A new look at the statistical model identification , 1974 .

[38]  S. Addelman Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments , 1962 .

[39]  Philippe Cattin,et al.  Commercial Use of Conjoint Analysis: An Update , 1989 .

[40]  Jordan J. Louviere,et al.  Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data , 1983 .

[41]  M. Wedel,et al.  Consumer benefit segmentation using clusterwise linear regression , 1989 .

[42]  W. Kamakura A Least Squares Procedure for Benefit Segmentation with Conjoint Experiments , 1988 .

[43]  M. Wedel,et al.  A Clusterwise Regression Method for Simultaneous Fuzzy Market Structuring and Benefit Segmentation , 1991 .

[44]  Greg M. Allenby,et al.  On the Heterogeneity of Demand , 1998 .

[45]  Wayne S. DeSarbo,et al.  A simulated annealing methodology for clusterwise linear regression , 1989 .

[46]  Girish N. Punj,et al.  Cluster Analysis in Marketing Research: Review and Suggestions for Application , 1983 .

[47]  M. Ben-Akiva,et al.  Modeling Methods for Discrete Choice Analysis , 1997 .

[48]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[49]  W. DeSarbo,et al.  An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data , 1993 .

[50]  Greg M. Allenby,et al.  Incorporating Prior Knowledge into the Analysis of Conjoint Studies , 1995 .

[51]  Jordan J. Louviere,et al.  An Empirical Comparison of Ratings-Based and Choice-Based Conjoint Models , 1992 .

[52]  Wayne S. DeSarbo,et al.  Sculptre: A New Methodology for Deriving and Analyzing Hierarchical Product-Market Structures from Panel Data , 1990 .

[53]  W. DeSarbo,et al.  A Review of Recent Developments in Latent Class Regression Models , 1994 .