Programmed Genome Rearrangements in the Ciliate Oxytricha

The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.

[1]  M. Yao,et al.  The controlling sequence for site-specific chromosome breakage in tetrahymena , 1990, Cell.

[2]  Leonard D. Goldstein,et al.  piRNAs Can Trigger a Multigenerational Epigenetic Memory in the Germline of C. elegans , 2012, Cell.

[3]  Hugh M Robertson,et al.  The Bursicon Gene in Mosquitoes: An Unusual Example of mRNA Trans-splicing , 2007, Genetics.

[4]  H. Wieden,et al.  De novo cytosine methylation in the differentiating macronucleus of the stichotrichous ciliate Stylonychia lemnae. , 2003, Nucleic acids research.

[5]  J. Doudna,et al.  Molecular mechanisms of RNA interference. , 2013, Annual review of biophysics.

[6]  Carol W. Greider,et al.  Identification of a specific telomere terminal transferase activity in tetrahymena extracts , 1985, Cell.

[7]  M. Yao,et al.  A Domesticated piggyBac Transposase Plays Key Roles in Heterochromatin Dynamics and DNA Cleavage during Programmed DNA Deletion in Tetrahymena thermophila , 2010, Molecular biology of the cell.

[8]  T. Doak A proposed superfamily of transposase-related genes: new members in transposon-like elements of ciliated protozoa and a common "D35E" motif , 1994 .

[9]  M. Yao,et al.  The intranuclear organization of normal, hemizygous and excision-deficient rRNA genes during developmental amplification in Tetrahymena thermophila , 1997, Chromosoma.

[10]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[11]  K. Williams,et al.  Developmental precise excision of Oxytricha trifallax telomere‐bearing elements and formation of circles closed by a copy of the flanking target duplication. , 1993, The EMBO journal.

[12]  Laura F. Landweber,et al.  RNA-mediated epigenetic programming of a genome-rearrangement pathway , 2008, Nature.

[13]  C. Mello,et al.  piRNAs Initiate an Epigenetic Memory of Nonself RNA in the C. elegans Germline , 2012, Cell.

[14]  M. Yao,et al.  Nongenic, bidirectional transcription precedes and may promote developmental DNA deletion in Tetrahymena thermophila. , 2001, Genes & development.

[15]  T. Harumoto,et al.  Induced change in a non-mendelian determinant by transplantation of macronucleoplasm in Paramecium tetraurelia , 1986, Molecular and cellular biology.

[16]  D M Prescott,et al.  Reordering of nine exons is necessary to form a functional actin gene in Oxytricha nova. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Yao,et al.  Amplification of the rRNA genes in Tetrahymena. , 1979, Cold Spring Harbor symposia on quantitative biology.

[18]  M. Tress,et al.  Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts , 2012, Genome research.

[19]  Grzegorz Rozenberg,et al.  The Pathway to Detangle a Scrambled Gene , 2008, PloS one.

[20]  Stephen P. Jackson,et al.  Chromothripsis and cancer: causes and consequences of chromosome shattering , 2012, Nature Reviews Cancer.

[21]  L. Klobutcher,et al.  High fidelity developmental excision of Tec1 transposons and internal eliminated sequences in Euplotes crassus. , 1991, Nucleic acids research.

[22]  M. Kloc,et al.  Chromatin elimination--an oddity or a common mechanism in differentiation and development? , 2001, Differentiation; research in biological diversity.

[23]  A Ehrenfeucht,et al.  Template-guided recombination for IES elimination and unscrambling of genes in stichotrichous ciliates. , 2003, Journal of theoretical biology.

[24]  D M Prescott,et al.  Scrambled actin I gene in the micronucleus of Oxytricha nova. , 1992, Developmental genetics.

[25]  L. Katz,et al.  Smith ScholarWorks Smith ScholarWorks Alternative Processing of Scrambled Genes Generates Protein Alternative Processing of Scrambled Genes Generates Protein Diversity in the Ciliate Diversity in the Ciliate Chilodonella uncinata Chilodonella uncinata , 2022 .

[26]  E. Blackburn,et al.  Methylation of ribosomal RNA genes in the macronucleus of Tetrahymena thermophila. , 1983, Nucleic acids research.

[27]  Jean Thierry-Mieg,et al.  A global analysis of Caenorhabditis elegans operons , 2002, Nature.

[28]  L. Klobutcher,et al.  Consensus inverted terminal repeat sequence of Paramecium IESs: resemblance to termini of Tc1-related and Euplotes Tec transposons. , 1995, Nucleic acids research.

[29]  L. Klobutcher,et al.  Characterization of chromosome fragmentation in two protozoans and identification of a candidate fragmentation sequence in Euplotes crassus. , 1989, Genes & development.

[30]  P. Jallepalli,et al.  Chromothripsis: chromosomes in crisis. , 2012, Developmental cell.

[31]  David H Perlman,et al.  Cytosine methylation and hydroxymethylation mark DNA for elimination in Oxytricha trifallax , 2012, Genome Biology.

[32]  T. Blumenthal Split Genes: Another Surprise from Giardia , 2011, Current Biology.

[33]  F. Alt,et al.  The role of the non‐homologous end‐joining pathway in lymphocyte development , 2004, Immunological reviews.

[34]  W. Hennig,et al.  The development of the macronucleus in the ciliated protozoan Stylonychia mytilus , 1974, Chromosoma.

[35]  W. Miao,et al.  Whole genome studies of Tetrahymena. , 2012, Methods in cell biology.

[36]  David M. Prescott,et al.  Genome gymnastics: unique modes of dna evolution and processing in ciliates , 2000, Nature Reviews Genetics.

[37]  L. Landweber,et al.  The evolutionary origin of a complex scrambled gene. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  F. Jönsson,et al.  Differential expression of histone H3 genes and selective association of the variant H3.7 with a specific sequence class in Stylonychia macronuclear development , 2014, Epigenetics & Chromatin.

[39]  T. Fujisawa,et al.  Analysis of a piwi-Related Gene Implicates Small RNAs in Genome Rearrangement in Tetrahymena , 2002, Cell.

[40]  J. Vermeesch,et al.  Conserved DNA sequences adjacent to chromosome fragmentation and telomere addition sites in Euplotes crassus. , 1998, Nucleic acids research.

[41]  Cheng-Zhong Zhang,et al.  Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements , 2013, Genes & development.

[42]  G. Drouin,et al.  Chromatin diminution in the copepod Mesocyclops edax: elimination of both highly repetitive and nonhighly repetitive DNA. , 2013, Genome.

[43]  Kenny Q. Ye,et al.  Strong Association of De Novo Copy Number Mutations with Autism , 2007, Science.

[44]  Laura F. Landweber,et al.  The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development , 2014, Cell.

[45]  L. Landweber,et al.  Genomes on the Edge: Programmed Genome Instability in Ciliates , 2013, Cell.

[46]  J W Jaraczewski,et al.  Elimination of Tec elements involves a novel excision process. , 1993, Genes & development.

[47]  S. Yanagisawa,et al.  Heterogeneous Sp1 mRNAs in Human HepG2 Cells Include a Product of Homotypic trans-Splicing* , 2000, The Journal of Biological Chemistry.

[48]  M. Ringnér,et al.  Impact of DNA amplification on gene expression patterns in breast cancer. , 2002, Cancer research.

[49]  T. Blumenthal,et al.  Trans‐splicing , 2011, Wiley interdisciplinary reviews. RNA.

[50]  B. Polisky,et al.  Identification of DNA segments capable of rescuing a non-mendelian mutant in paramecium. , 1994, Genetics.

[51]  D. Rossell,et al.  Ectopic Expression of Germline Genes Drives Malignant Brain Tumor Growth in Drosophila , 2010, Science.

[52]  S. Yanagisawa,et al.  The trans-spliced variants of Sp1 mRNA in rat. , 2002, Biochemical and biophysical research communications.

[53]  C. Baker,et al.  Genetic Consequences of Programmed Genome Rearrangement , 2012, Current Biology.

[54]  Christian A. Rees,et al.  Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D M Prescott,et al.  The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates. , 1999, Nucleic acids research.

[56]  D. Witherspoon,et al.  Conserved features of TBE1 transposons in ciliated protozoa , 2004, Genetica.

[57]  D. Hourcade,et al.  The amplification of ribosomal RNA genes involves a rolling circle intermediate. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Daniel J. G. Lahr,et al.  Estimating the timing of early eukaryotic diversification with multigene molecular clocks , 2011, Proceedings of the National Academy of Sciences.

[59]  Songtao Jia,et al.  RNAi-Mediated Targeting of Heterochromatin by the RITS Complex , 2004, Science.

[60]  R. Waller,et al.  A Widespread and Unusual RNA Trans-Splicing Type in Dinoflagellate Mitochondria , 2013, PloS one.

[61]  J. Bracht Beyond transcriptional silencing: Is methylcytosine a widely conserved eukaryotic DNA elimination mechanism? , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[62]  D. Prescott,et al.  DNA of ciliated protozoa , 1971, Chromosoma.

[63]  M. Yao,et al.  Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahymena thermophila with germ line-limited DNA , 1996, Molecular and cellular biology.

[64]  L. Landweber,et al.  Epigenetic inheritance in ciliates. , 2009, Current opinion in microbiology.

[65]  M. Yao,et al.  Nucleotide sequence structure and consistency of a developmentally regulated DNA deletion in Tetrahymena thermophila , 1987, Molecular and cellular biology.

[66]  Michel Eduardo Beleza Yamagishi,et al.  Detection of human interchromosomal trans-splicing in sequence databanks , 2010, Briefings Bioinform..

[67]  S. Hattman,et al.  DNA-[Adenine] Methylation in Lower Eukaryotes , 2005, Biochemistry (Moscow).

[68]  F. Alt,et al.  Class-switch recombination: interplay of transcription, DNA deamination and DNA repair , 2004, Nature Reviews Immunology.

[69]  Sean D. Taverna,et al.  RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. , 2007, Genes & development.

[70]  Yifan Liu,et al.  Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Julie A. Law,et al.  Establishing, maintaining and modifying DNA methylation patterns in plants and animals , 2010, Nature Reviews Genetics.

[72]  Laura F. Landweber,et al.  Why Genomes in Pieces? , 2007, Science.

[73]  L. Landweber,et al.  Detection of a common chimeric transcript between human chromosomes 7 and 16 , 2012, Biology Direct.

[74]  J. Matese,et al.  The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes , 2013, PLoS biology.

[75]  S. Kobayashi,et al.  Microinjection of plasmid DNA encoding the A surface antigen of Paramecium tetraurelia restores the ability to regenerate a wild-type macronucleus , 1989, Molecular and cellular biology.

[76]  L. Klobutcher Characterization of in vivo developmental chromosome fragmentation intermediates in E. crassus. , 1999, Molecular cell.

[77]  J. Postberg,et al.  snRNA and Heterochromatin Formation Are Involved in DNA Excision during Macronuclear Development in Stichotrichous Ciliates , 2005, Eukaryotic Cell.

[78]  G. Burger,et al.  Unscrambling genetic information at the RNA level , 2012, Wiley interdisciplinary reviews. RNA.

[79]  Benjamin E. Lauderdale,et al.  The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences , 2012, PLoS genetics.

[80]  D. Fitzpatrick,et al.  Transcriptional consequences of autosomal trisomy: primary gene dosage with complex downstream effects. , 2005, Trends in genetics : TIG.

[81]  S. Duharcourt,et al.  Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. , 2008, Genes & development.

[82]  L. Klobutcher,et al.  Genome remodeling in ciliated protozoa. , 2002, Annual review of microbiology.

[83]  David H Perlman,et al.  Cytosine methylation and hydroxymethylation mark DNA for elimination in Oxytricha trifallax , 2012, Genome Biology.

[84]  L. Landweber,et al.  A Functional Role for Transposases in a Large Eukaryotic Genome , 2009, Science.

[85]  L. Landweber,et al.  Piwi-Interacting RNAs Protect DNA against Loss during Oxytricha Genome Rearrangement , 2012, Cell.

[86]  Thomas G Doak,et al.  Telomere formation on macronuclear chromosomes of Oxytricha trifallax and O. fallax: alternatively processed regions have multiple telomere addition sites , 2002, BMC Genetics.

[87]  G. Herrick,et al.  Alternative processing during development of a macronuclear chromosome family in Oxytricha fallax. , 1987, Genes & development.

[88]  A. Streit Silencing by throwing away: a role for chromatin diminution. , 2012, Developmental cell.

[89]  T. Doak,et al.  A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common "D35E" motif. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[90]  D. Schatz,et al.  Recombination centres and the orchestration of V(D)J recombination , 2011, Nature Reviews Immunology.

[91]  M. E. Jacobs,et al.  The Long and the Short of Developmental DNA Deletion in Euplotes crassus 1 , 1996, The Journal of eukaryotic microbiology.

[92]  Alexander F Schier,et al.  The Maternal-Zygotic Transition: Death and Birth of RNAs , 2007, Science.

[93]  Haifan Lin,et al.  The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. , 2009, Annual review of cell and developmental biology.

[94]  L. Klobutcher,et al.  Developmental genome reorganization in ciliated protozoa: the transposon link. , 1997, Progress in nucleic acid research and molecular biology.

[95]  J. Sklar,et al.  A Neoplastic Gene Fusion Mimics Trans-Splicing of RNAs in Normal Human Cells , 2008, Science.

[96]  C. Jahn Differentiation of chromatin during DNA elimination in Euplotes crassus. , 1999, Molecular biology of the cell.

[97]  K J Aufderheide,et al.  Formation and positioning of surface-related structures in protozoa. , 1980, Microbiological reviews.

[98]  L. Landweber,et al.  RNA-mediated epigenetic regulation of DNA copy number , 2010, Proceedings of the National Academy of Sciences.

[99]  J. Forney,et al.  The role of macronuclear DNA sequences in the permanent rescue of a non-mendelian mutation in Paramecium tetraurelia. , 1994, Genetics.

[100]  J. Seger,et al.  Selection on the protein-coding genes of the TBE1 family of transposable elements in the ciliates Oxytricha fallax and O. trifallax. , 1997, Molecular biology and evolution.

[101]  K. Aufderheide,et al.  Macronuclear transformation with specific DNA fragments controls the content of the new macronuclear genome in Paramecium tetraurelia , 1991, Molecular and cellular biology.

[102]  T. Kuroiwa,et al.  Identification of highly-disrupted tRNA genes in nuclear genome of the red alga, Cyanidioschyzon merolae 10D , 2013, Scientific Reports.

[103]  Lawrence A. Klobutcher,et al.  Detection of circular forms of eliminated DNA during macronuclear development in E. crassus , 1989, Cell.

[104]  Haifan Lin,et al.  PIWI proteins and PIWI-interacting RNAs in the soma , 2014, Nature.

[105]  Aurélie Kapusta,et al.  Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling , 2011, Nucleic acids research.

[106]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[107]  Terry Gaasterland,et al.  A computational investigation of kinetoplastid trans-splicing , 2005, Genome Biology.

[108]  F. Jönsson,et al.  RNA-dependent control of gene amplification , 2010, Proceedings of the National Academy of Sciences.

[109]  L. Sperling,et al.  Homology-dependent gene silencing in Paramecium. , 1998, Molecular biology of the cell.

[110]  Sean D. Taverna,et al.  Methylation of Histone H3 at Lysine 9 Targets Programmed DNA Elimination in Tetrahymena , 2002, Cell.

[111]  M. Yao,et al.  Genome-Wide Rearrangements of DNA in Ciliates , 2002 .

[112]  N. Craig,et al.  piggyBac can bypass DNA synthesis during cut and paste transposition , 2008, The EMBO journal.

[113]  B. Spear,et al.  Polytene chromosomes of Oxytricha: Biochemical and morphological changes during macronuclear development in a ciliated protozoan , 1976, Chromosoma.

[114]  A. Spradling The organization and amplification of two chromosomal domains containing drosophila chorion genes , 1981, Cell.

[115]  A. Zahler,et al.  Mating of the Stichotrichous Ciliate Oxytricha trifallax Induces Production of a Class of 27 nt Small RNAs Derived from the Parental Macronucleus , 2012, PloS one.

[116]  A. Butler,et al.  Epigenetic self-regulation of developmental excision of an internal eliminated sequence on Paramecium tetraurelia. , 1995, Genes & development.

[117]  M. Gellert V(D)J Recombination , 2002 .

[118]  Philip M. Kim,et al.  The current excitement about copy-number variation: how it relates to gene duplications and protein families. , 2008, Current opinion in structural biology.

[119]  H. Lipps,et al.  Chromatin elimination in the hypotrichous ciliate Stylonychia mytilus , 2004, Chromosoma.

[120]  A. Chinnaiyan,et al.  Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences , 2011, Nature Reviews Genetics.

[121]  L. Landweber,et al.  Transposon Domestication versus Mutualism in Ciliate Genome Rearrangements , 2013, PLoS genetics.

[122]  Nikhil A. Joshi,et al.  Genome-Scale Analysis of Programmed DNA Elimination Sites in Tetrahymena thermophila , 2011, G3: Genes | Genomes | Genetics.

[123]  M. Tomita,et al.  Permuted tRNA Genes Expressed via a Circular RNA Intermediate in Cyanidioschyzon merolae , 2007, Science.

[124]  T. Kunkel,et al.  RNA-templated DNA repair , 2007, Nature.

[125]  T. Noto,et al.  Biased transcription and selective degradation of small RNAs shape the pattern of DNA elimination in Tetrahymena. , 2012, Genes & development.

[126]  M. R. Esteban,et al.  Chromosome elimination in sciarid flies , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[127]  Kazufumi Mochizuki DNA rearrangements directed by non‐coding RNAs in ciliates , 2010, Wiley interdisciplinary reviews. RNA.

[128]  H. Seitz,et al.  Timing of Developmentally Programmed Excision and Circularization of Paramecium Internal Eliminated Sequences , 2000, Molecular and Cellular Biology.

[129]  D. Ang,et al.  Mobile elements bounded by C4A4 telomeric repeats in oxytricha fallax , 1985, Cell.

[130]  F. Müller,et al.  Chromatin diminution in the parasitic nematodes ascaris suum and parascaris univalens. , 2000, International journal for parasitology.

[131]  Aurélie Kapusta,et al.  PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. , 2009, Genes & development.

[132]  M. Nowacki,et al.  Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. , 2014, Developmental cell.

[133]  M. Nowacki,et al.  Silencing-associated and meiosis-specific small RNA pathways in Paramecium tetraurelia , 2008, Nucleic acids research.

[134]  H. Robertson Evolution of DNA Transposons in Eukaryotes , 2002 .

[135]  J. Martignetti,et al.  A candidate chimeric mammalian mRNA transcript is derived from distinct chromosomes and is associated with nonconsensus splice junction motifs. , 2003, DNA and cell biology.

[136]  Natasa Jonoska,et al.  RNA-guided DNA assembly. , 2007, Journal of theoretical biology.

[137]  B. Polisky,et al.  Permanent rescue of a non-Mendelian mutation of Paramecium by microinjection of specific DNA sequences. , 1991, Genetics.

[138]  K. Mochizuki,et al.  Keeping the Soma Free of Transposons: Programmed DNA Elimination in Ciliates* , 2011, The Journal of Biological Chemistry.

[139]  C. Pikaard,et al.  Plant Nuclear RNA Polymerase IV Mediates siRNA and DNA Methylation-Dependent Heterochromatin Formation , 2005, Cell.