Mixed Radix-2 and High-Radix RNS Bases for Low-Power Multiplication

This paper investigates the performance of a novel set of Residue Number System (RNS) bases, emphasizing on the minimization of the power×delay product. The proposed bases introduce moduli of the form 3 n , to the usual choice of moduli of the form 2 n , 2 n  − 1, or 2 n  + 1. It is found that for particular dynamic ranges, the introduction of high-radix modulo-3 n multipliers significantly improves the power×delay performance of residue multiplication, in comparison to conventional two’s-complement implementations as well as to RNS architectures using bases composed of radix-2 moduli. Experimental results demonstrate reduction of the power×delay product by almost a factor of two, for some cases.

[1]  Sergio Lopez-Buedo,et al.  RNS-enabled digital signal processor design , 2002 .

[2]  G. Jullien,et al.  An algorithm for multiplication modulo (2/spl and/N-1) , 1996, Proceedings of the 39th Midwest Symposium on Circuits and Systems.

[3]  Vassilis Paliouras,et al.  Novel high-radix residue number system architectures , 2000 .

[4]  F. J. Taylor,et al.  Residue Arithmetic A Tutorial with Examples , 1984, Computer.

[5]  Jan M. Rabaey,et al.  Activity-sensitive architectural power analysis , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Christopher S. Wallace,et al.  A Suggestion for a Fast Multiplier , 1964, IEEE Trans. Electron. Comput..

[7]  Vassilis Paliouras,et al.  High-radix redundant circuits for RNS modulo r/sup n/ - 1, r/sup n/, or r/sup n/ + 1 , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[8]  Richard I. Tanaka,et al.  Residue arithmetic and its applications to computer technology , 1967 .

[9]  Gian Carlo Cardarilli,et al.  Reducing power dissipation in FIR filters using the residue number system , 2000, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144).

[10]  A. S. Madhukumar,et al.  Enhanced architecture for residue number system-based CDMA for high-rate data transmission , 2004, IEEE Transactions on Wireless Communications.

[11]  Vassilis Paliouras,et al.  Considering the alternatives in low-power design , 2001 .

[12]  Vassilis Paliouras,et al.  Multi-voltage low power convolvers using the polynomial residue number system , 2002, GLSVLSI '02.

[13]  Gian Carlo Cardarilli,et al.  Tradeoffs between residue number system and traditional FIR filters , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[14]  Michael A. Soderstrand,et al.  Residue number system arithmetic: modern applications in digital signal processing , 1986 .

[15]  F. Taylor,et al.  Index-based RNS DWT architectures for custom IC designs , 2001, 2001 IEEE Workshop on Signal Processing Systems. SiPS 2001. Design and Implementation (Cat. No.01TH8578).

[16]  Lars Wanhammar,et al.  Power Estimation for Ripple-Carry Adders with Correlated Input Data , 2004, PATMOS.

[17]  Robert O. Winder,et al.  Majority Gate Networks , 1964, IEEE Trans. Electron. Comput..

[18]  Haridimos T. Vergos,et al.  Modulo 2n±1 Adder Design Using Select-Prefix Blocks , 2003, IEEE Trans. Computers.

[19]  Vassilis Paliouras,et al.  Low-Power Digital Filtering Based on the Logarithmic Number System , 2007, PATMOS.

[20]  Ahmad A. Hiasat,et al.  High-Speed and Reduced-Area Modular Adder Structures for RNS , 2002, IEEE Trans. Computers.

[21]  Lajos Hanzo,et al.  Adaptive redundant residue number system coded multicarrier modulation , 2000, IEEE Journal on Selected Areas in Communications.