HEAT TRANSFER IN A THIN LIQUID FILM IN THE PRESENCE OF AN ELECTRIC FIELD

Heat transfer enhancement in an evaporating thin liquid film utilizing a electric field under isothermal interfacial condition is presented. A new mathematical model subjected to van der Waals attractive forces, capillary pressure, and an electric field is developed to describe the heat transfer enhancement in the evaporating thin liquid film. The effect of the electrostatic field on the curvature of the thin film, evaporative flux, pressure gradient distribution, heat flux, and heat transfer coefficient in the thin film is presented. The results show that applying an electric field can enhance heat transfer in a thin liquid film significantly. In addition, utilizing electric fields on the evaporating film will be a way to expand the extended meniscus region to attain high heat transfer coefficients and high rates of heat flux.

[1]  Ivan B. Bazhlekov,et al.  Spreading of a wetting film under the action of van der Waals forces , 2000 .

[2]  Mohamed Chaker Zaghdoudi,et al.  Analysis of the polarity influence on nucleate pool boiling under a DC electric field , 1999 .

[3]  L. Byrd,et al.  Effect of Electrostatic Field on Film Rupture , 1999 .

[4]  Amir Faghri,et al.  Flat Miniature Heat Pipes With Micro Capillary Grooves , 1999 .

[5]  V. V. Kolomeitsev,et al.  Heat Engineering , 1999 .

[6]  J. M. Ha,et al.  The Heat Transport Capacity of Micro Heat Pipes , 1998 .

[7]  O. Voinov Meniscus Contact Angle in Unsteady Viscous Flow , 1998 .

[8]  Yuying Yan,et al.  Enhancement of heat exchanger performance using combined electrohydrodynamic and passive methods , 1996 .

[9]  P. Wayner,et al.  Shape of an Evaporating Completely Wetting Extended Meniscus , 1996 .

[10]  A. Faghri,et al.  Thermal Characteristics of Conventional and Flat Miniature Axially Grooved Heat Pipes , 1995 .

[11]  E. Zanchini,et al.  The temperature field in a cylindrical electric conductor with annular section , 1995 .

[12]  Peter C. Wayner,et al.  Use of the Kelvin-Clapeyron Equation to Model an Evaporating Curved Microfilm , 1994 .

[13]  P. Wayner Thermal and Mechanical Effects in the Spreading of a Liquid Film Due to a Change in the Apparent Finite Contact Angle , 1994 .

[14]  W. Chang,et al.  Evaporation from an extended meniscus for nonisothermal interfacial conditions , 1994 .

[15]  Ichiro Tanasawa,et al.  Active enhancement of evaporation of a liquid drop on a hot solid surface using a static electric field , 1994 .

[16]  G. Peterson,et al.  Evaporating Extended Meniscus in a V-Shaped Channel , 1994 .

[17]  H. Peerhossaini,et al.  Ohmic heating of complex fluids , 1993 .

[18]  K. Hallinan,et al.  Boundary Conditions for an Evaporating Thin Film for Isothermal Interfacial Conditions , 1993 .

[19]  P. Wayner,et al.  Use of the Augmented Young-Laplace Equation to Model Equilibrium and Evaporating Extended Menisci , 1993 .

[20]  W. Chang,et al.  Heat Transfer from Stable, Evaporating Thin Films in the Neighborhood of a Contact Line , 1993 .

[21]  L. W. Swanson,et al.  Model of the evaporating meniscus in a capillary tube , 1992 .

[22]  T. Maekawa,et al.  Onset of Natural Convection Under Electric Field , 1992 .

[23]  Maekawa Toru,et al.  Onset of natural convection under an electric fieldt , 1992 .

[24]  C. A. Busse,et al.  Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls , 1992 .

[25]  K. Hallinan,et al.  Evaporation from a Porous Wick heat Pipe for Isothermal Interfacial Conditions , 1992 .

[26]  M. Kaviany,et al.  Simultaneous Heat and Mass Transfer From a Two-Dimensional, Partially Liquid-Covered Surface , 1991 .

[27]  Enrique Rame,et al.  On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation , 1991, Journal of Fluid Mechanics.

[28]  Xianfan Xu,et al.  Film evaporation from a micro-grooved surface―an approximate heat transfer model and its comparison with experimental data , 1990 .

[29]  P. Wayner,et al.  Analytical solution for the integral contact line evaporative heat sink , 1990 .

[30]  P. Wayner A Dimensionless Number for the Contact Line Evaporative Heat Sink , 1989 .

[31]  I. Catton,et al.  A physical model of the evaporating meniscus , 1988 .

[32]  P. Wayner,et al.  Effects of capillary and van der Waals dispersion forces on the equilibrium profile of a wetting liquid: Theory and experiment , 1987 .

[33]  G. Homsy,et al.  Evaporating menisci of wetting fluids , 1980 .

[34]  F. W. Holm,et al.  Heat Transfer in the Meniscus Thin-Film Transition Region , 1979 .

[35]  T. Jones,et al.  Electrohydrodynamically enhanced heat transfer in liquids - A review , 1979 .

[36]  P. Wayner,et al.  On the transition between a wetting film and a capillary meniscus , 1978 .

[37]  Jan Berghmans,et al.  Electrostatic fields and the maximum heat flux , 1976 .

[38]  P. Wayner,et al.  The interline heat-transfer coefficient of an evaporating wetting film , 1976 .

[39]  M. K. Bologa,et al.  Convective heat-transfer enhancement by electric fields , 1975 .

[40]  D. Edwards,et al.  Power-Law Solutions for Evaporation From a Finned Surface , 1974 .

[41]  P. Wayner,et al.  Evaporation from a two-dimensional extended meniscus , 1972 .

[42]  R. Turnbull Effect of a non-uniform alternating electric field on the thermal boundary layer near a heated vertical plate , 1971, Journal of Fluid Mechanics.

[43]  P. Lykoudis,et al.  The influence of electrostrictive forces in natural thermal convection , 1963 .