Loss of function of FIP200 in human pluripotent stem cell-derived neurons leads to axonal pathology and hyperactivity

[1]  B. Kuster,et al.  Stress-primed secretory autophagy promotes extracellular BDNF maturation by enhancing MMP9 secretion , 2021, Nature Communications.

[2]  W. Hevers,et al.  NGN2 induces diverse neuron types from human pluripotency , 2021, Stem cell reports.

[3]  C. Conrad,et al.  SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals , 2021, Nature Communications.

[4]  D. Sharlin,et al.  FAM171B is a novel polyglutamine protein widely expressed in the mammalian brain , 2021, Brain Research.

[5]  C. Eroglu,et al.  Cell adhesion molecules regulating astrocyte–neuron interactions , 2021, Current Opinion in Neurobiology.

[6]  A. Iolascon,et al.  RB1CC1 duplication and aberrant overexpression in a patient with schizophrenia: further phenotype delineation and proposal of a pathogenetic mechanism , 2020, Molecular genetics & genomic medicine.

[7]  Jaak Vilo,et al.  gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler , 2020, F1000Research.

[8]  D. Schmitz,et al.  Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum , 2020, Neuron.

[9]  Kevin A. Johnson,et al.  Decreased interhemispheric connectivity and increased cortical excitability in unmedicated schizophrenia: A prefrontal interleaved TMS fMRI study , 2020, Brain Stimulation.

[10]  O. Brüstle,et al.  Protocol for the Standardized Generation of Forward Programmed Cryopreservable Excitatory and Inhibitory Forebrain Neurons , 2020, STAR protocols.

[11]  J. Guan,et al.  FAK activates AKT-mTOR signaling to promote the growth and progression of MMTV-Wnt1-driven basal-like mammary tumors , 2020, Breast Cancer Research.

[12]  B. Honig,et al.  Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-Cell Recognition , 2020, Cell.

[13]  M. Kye,et al.  Autophagy lipidation machinery regulates axonal microtubule dynamics but is dispensable for survival of mammalian neurons , 2020, Nature Communications.

[14]  S. Martens,et al.  Recruitment and Activation of the ULK1/Atg1 Kinase Complex in Selective Autophagy , 2020, Journal of molecular biology.

[15]  E. Holzbaur,et al.  Autophagy in Neurons. , 2019, Annual review of cell and developmental biology.

[16]  G. Schiavo,et al.  Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy , 2019, Molecular cell.

[17]  Elsje G. Otten,et al.  The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria , 2019, Molecular cell.

[18]  J. Rapoport,et al.  Dysregulated protocadherin-pathway activity as an intrinsic defect in iPSC-derived cortical interneurons from patients with schizophrenia , 2019, Nature Neuroscience.

[19]  J. Rapoport,et al.  Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell–derived cortical interneurons from subjects with schizophrenia , 2019, Nature Neuroscience.

[20]  F. Song,et al.  Neuronal autophagy and axon degeneration , 2018, Cellular and Molecular Life Sciences.

[21]  J. Guan,et al.  Autophagy gene FIP200 in neural progenitors non–cell autonomously controls differentiation by regulating microglia , 2017, The Journal of cell biology.

[22]  Ching‐Jen Wang,et al.  The mTOR-FAK mechanotransduction signaling axis for focal adhesion maturation and cell proliferation. , 2017, American journal of translational research.

[23]  P. Puigserver,et al.  A PGC1α-mediated transcriptional axis suppresses melanoma metastasis , 2016, Nature.

[24]  E. Holzbaur,et al.  Compartment-Specific Regulation of Autophagy in Primary Neurons , 2016, The Journal of Neuroscience.

[25]  J. Weiner,et al.  Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity. , 2016, Cell reports.

[26]  D. Schreiner,et al.  Protein Kinase C Phosphorylation of a γ-Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization* , 2015, The Journal of Biological Chemistry.

[27]  S. Mitter,et al.  Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium , 2015, Autophagy.

[28]  I. Ganley,et al.  Pharmacological Inhibition of ULK1 Kinase Blocks Mammalian Target of Rapamycin (mTOR)-dependent Autophagy* , 2015, The Journal of Biological Chemistry.

[29]  P. Fitzgerald,et al.  Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia. , 2015, Brain : a journal of neurology.

[30]  Arne V. Blackman,et al.  Neuronal morphometry directly from bitmap images , 2014, Nature Methods.

[31]  Bradley S. Peterson,et al.  Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits , 2014, Neuron.

[32]  Stephan Heckers,et al.  Increased hippocampal CA1 cerebral blood volume in schizophrenia , 2014, NeuroImage: Clinical.

[33]  E. Holzbaur,et al.  Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. , 2014, Developmental cell.

[34]  Jeffrey J. Nirschl,et al.  LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. , 2014, Developmental cell.

[35]  Lisle W. Blackbourn,et al.  A Simple and Efficient System for Regulating Gene Expression in Human Pluripotent Stem Cells and Derivatives , 2014, Stem cells.

[36]  R. Freedman,et al.  Intrinsic hippocampal activity as a biomarker for cognition and symptoms in schizophrenia. , 2014, The American journal of psychiatry.

[37]  D. Rujescu,et al.  Duplications in RB1CC1 are associated with schizophrenia; identification in large European sample sets , 2013, Translational Psychiatry.

[38]  T. Südhof,et al.  Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells , 2013, Neuron.

[39]  Beatriz Paniagua,et al.  Imaging Patients with Psychosis and a Mouse Model Establishes a Spreading Pattern of Hippocampal Dysfunction and Implicates Glutamate as a Driver , 2013, Neuron.

[40]  J. Guan,et al.  FIP200 is required for maintenance and differentiation of postnatal neural stem cells , 2013, Nature Neuroscience.

[41]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[42]  R. Burke,et al.  Regulation of Presynaptic Neurotransmission by Macroautophagy , 2012, Neuron.

[43]  D. Schreiner,et al.  γ-Protocadherins Control Cortical Dendrite Arborization by Regulating the Activity of a FAK/PKC/MARCKS Signaling Pathway , 2012, Neuron.

[44]  E. Holzbaur,et al.  Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons , 2012, The Journal of cell biology.

[45]  Gregory M. Cooper,et al.  A Copy Number Variation Morbidity Map of Developmental Delay , 2011, Nature Genetics.

[46]  S. Levy,et al.  Exome sequencing supports a de novo mutational paradigm for schizophrenia , 2011, Nature Genetics.

[47]  O. Sansom,et al.  A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis , 2011, Cell cycle.

[48]  C. Liang,et al.  Neural-specific Deletion of FIP200 Leads to Cerebellar Degeneration Caused by Increased Neuronal Death and Axon Degeneration* , 2009, The Journal of Biological Chemistry.

[49]  D. Jeong,et al.  Synapse formation regulated by protein tyrosine phosphatase receptor T through interaction with cell adhesion molecules and Fyn , 2009, The EMBO journal.

[50]  She Chen,et al.  ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy* , 2009, Journal of Biological Chemistry.

[51]  S. Couillard-Després,et al.  Lineage Selection of Functional and Cryopreservable Human Embryonic Stem Cell‐Derived Neurons , 2008, Stem cells.

[52]  J. Guan,et al.  FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells , 2008, The Journal of cell biology.

[53]  D. Pinto,et al.  Structural variation of chromosomes in autism spectrum disorder. , 2008, American journal of human genetics.

[54]  A. Grace,et al.  Aberrant Hippocampal Activity Underlies the Dopamine Dysregulation in an Animal Model of Schizophrenia , 2007, The Journal of Neuroscience.

[55]  T. Noda,et al.  Dissection of the Autophagosome Maturation Process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3 , 2007, Autophagy.

[56]  Christopher Autry,et al.  Cellular Characterization of a Novel Focal Adhesion Kinase Inhibitor* , 2007, Journal of Biological Chemistry.

[57]  J. Guan,et al.  Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC–mTOR signaling pathways , 2006, The Journal of cell biology.

[58]  M. Coleman Axon degeneration mechanisms: commonality amid diversity , 2005, Nature Reviews Neuroscience.

[59]  D. Dickson,et al.  Ultrastructural neuronal pathology in transgenic mice expressing mutant (P301L) human tau , 2003, Journal of neurocytology.

[60]  Hiroki Ueda,et al.  Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. , 2002, Molecular biology of the cell.

[61]  H. Ueda,et al.  Suppression of Pyk2 Kinase and Cellular Activities by Fip200 , 2000, The Journal of cell biology.

[62]  D. D.-B.,et al.  Degeneration and Regeneration of the Nervous System , 1930, Nature.