Thermal stability of Fe–Mn binary olivine cathodes for Li rechargeable batteries

The phase stability of binary Fe and Mn olivine materials is extensively studied with temperature-controlled in situ X-ray diffraction (XRD) for various Fe/Mn ratios and state of charges (SOCs). We identify that the thermal behavior of partially charged olivine materials is sensitively affected by the Fe/Mn ratio in the crystal. While Fe-rich binary olivine materials readily formed a solid solution phase of Li1−yFe1−xMnxPO4 near room temperature or with only slight heating, the Mn-rich binary olivine retained its two-phase characteristic up to ca. 250 °C before decomposition into non-olivine phases. The thermal stability and decomposition mechanism of fully delithiated olivine materials are more sensitively affected by the Fe/Mn ratio in the crystal. The decomposition temperature varies from 200 °C to 500 °C among the different Fe/Mn ratios. It is generally observed that the Mn-rich binary olivine materials are inferior to the Fe-rich ones with respect to the thermal stability in the delithiated state.

[1]  T. Kudo,et al.  Size and shape controlled LiMnPO4 nanocrystals by a supercritical ethanol process and their electrochemical properties , 2011 .

[2]  Chong Seung Yoon,et al.  Enhanced electrochemical performance of carbon–LiMn1−xFexPO4 nanocomposite cathode for lithium-ion batteries , 2011 .

[3]  Xuejie Huang,et al.  Electrochemical performances of LiFe1−xMnxPO4 with high Mn content , 2011 .

[4]  H. Dai,et al.  LiMn(1-x)Fe(x)PO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. , 2011, Angewandte Chemie.

[5]  K. Kang,et al.  Mg and Fe Co-doped Mn Based Olivine Cathode Material for High Power Capability , 2011 .

[6]  Guoying Chen,et al.  Improved kinetics and stabilities in Mg-substituted LiMnPO4 , 2010 .

[7]  B. Chowdari,et al.  Storage performance of LiFe1 − xMnxPO4 nanoplates (x = 0, 0.5, and 1) , 2010 .

[8]  K. Kang,et al.  Synthesis of Multicomponent Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization , 2010 .

[9]  Anubhav Jain,et al.  Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations , 2010 .

[10]  Guoying Chen Thermal Instability of Olivine-Type LiMnP04 Cathodes , 2010 .

[11]  K. Kang,et al.  Mn based olivine electrode material with high power and energy. , 2010, Chemical communications.

[12]  K. Kang,et al.  Multicomponent Olivine Cathode for Lithium Rechargeable Batteries: A First-Principles Study , 2010 .

[13]  K. Kang,et al.  Combined First‐Principle Calculations and Experimental Study on Multi‐Component Olivine Cathode for Lithium Rechargeable Batteries , 2009 .

[14]  Kisuk Kang,et al.  Phase Stability Study of Li1-xMnPO4 (0 <= x <= 1) Cathode for Li Rechargeable Battery , 2009 .

[15]  A. Yamada,et al.  Shift of redox potential and kinetics in Lix(MnyFe1−y)PO4 , 2009 .

[16]  G. Ceder,et al.  First principles study of Li diffusion in I-Li 2 NiO 2 structure , 2009 .

[17]  Haoshen Zhou,et al.  The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. , 2008, Angewandte Chemie.

[18]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[19]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[20]  Masao Yonemura,et al.  Electrochemical, Magnetic, and Structural Investigation of the Lix(MnyFe1-y)PO4 Olivine Phases , 2006 .

[21]  Jean-Marie Tarascon,et al.  Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO4 (M = Fe , Mn) Electrode Materials , 2005 .

[22]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[23]  G. Ceder,et al.  The electronic structure and band gap of LiFePO4 and LiMnPO4 , 2004, cond-mat/0506125.

[24]  A. Yamada,et al.  Comparative Kinetic Study of Olivine Li x MPO 4 ( M = Fe , Mn) , 2004 .

[25]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[26]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[27]  A. Yamada,et al.  Phase Diagram of Li x ( Mn y Fe1 − y ) PO 4 ( 0 ⩽ x , y ⩽ 1 ) , 2001 .

[28]  A. Yamada,et al.  Reaction Mechanism of the Olivine-Type Li x ( Mn0.6Fe0.4 ) PO 4 ( 0 ⩽ x ⩽ 1 ) , 2001 .

[29]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[32]  Steve W. Martin Ionic Conduction in Phosphate Glasses , 1991 .

[33]  J. Kim,et al.  The Effect of Particle Size on Phase Stability of the Delithiated LixMnPO4 , 2011 .

[34]  M. Yethiraj,et al.  Magnetic structure of iron(II) phosphate, sarcopside, Fe3(PO4)2 , 1992 .