3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method

This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions of anomalous conductivity and close to the location of the source. In order to avoid the source singularity, we solve Maxwell's equation with respect to anomalous electric field. The nonuniform rectangular mesh can be transformed to hexahedral mesh in order to simulate the bathymetry effect. The sparse system of finite element equations is solved using a quasi-minimum residual method with a Jacobian preconditioner. We have applied the developed algorithm to compute a typical MCSEM response over a 3D model of a hydrocarbon reservoir located in both isotropic and anisotropic mediums. The modeling results are in a good agreement with the solutions obtained by the integral equation method. HighlightsThis paper develops a novel formulation of the edge-based finite element method for 3D modeling of marine CSEM data in anisotropic conductive medium.The method uses the edge-based vector basis functions, which automatically enforce the divergence free conditions for electric and magnetic fields.The developed method is effective in modeling the seafloor bathymetry using hexahedral mesh.

[1]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[2]  David L. Alumbaugh,et al.  On the physics of the marine controlled-source electromagnetic method , 2007 .

[3]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[4]  Nuno V. da Silva,et al.  A finite element multifrontal method for 3D CSEM modeling in the frequency domain , 2012 .

[5]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[6]  M. Zhdanov,et al.  Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity , 2006 .

[7]  Guillaume Houzeaux,et al.  A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling , 2013 .

[8]  Martin C. Sinha,et al.  Role of fine-scale layering and grain alignment in the electrical anisotropy of marine sediments , 2010 .

[9]  G. A. Newman,et al.  Imaging CSEM data in the presence of electrical anisotropy - eScholarship , 2010 .

[10]  G. Keller,et al.  The Geoelectrical Methods in Geophysical Exploration , 1994 .

[11]  J. Clavaud Intrinsic Electrical Anisotropy of Shale: The Effect of Compaction , 2008 .

[12]  David Andreis,et al.  Controlled-source electromagnetic sounding in shallow water: Principles and applications , 2008 .

[13]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[14]  Shikun Dai,et al.  Finite element modelling of marine controlled-source electromagnetic responses in two-dimensional dipping anisotropic conductivity structures , 2011 .

[15]  Michael S. Zhdanov,et al.  Geophysical Electromagnetic Theory and Methods , 2009 .

[16]  Christoph Schwarzbach,et al.  Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example , 2011 .

[17]  Michael J. Tompkins,et al.  The Role of Vertical Anisotropy In Interpreting Marine Controlled-Source Electromagnetic Data , 2005 .

[18]  O. Axelsson Iterative solution methods , 1995 .

[19]  Michael S. Zhdanov,et al.  Electromagnetic geophysics: Notes from the past and the road ahead , 2010 .

[20]  Jinsong Chen,et al.  Resolution of reservoir scale electrical anisotropy from marine CSEM data , 2012 .

[21]  D. Guptasarma,et al.  New digital linear filters for Hankel J0 and J1 transforms , 1997 .

[22]  Toshihiro Uchida,et al.  3D magnetotelluric modeling using the T‐Ω finite‐element method , 2004 .

[23]  Gregory A. Newman,et al.  Electromagnetic induction in a fully 3‐D anisotropic earth , 2000 .

[25]  B. Ursin,et al.  Electromagnetic fields in planarly layered anisotropic media , 2007 .

[26]  Leonard J. Srnka,et al.  Remote reservoir resistivity mapping , 2005 .

[27]  Y. Sasaki Bathymetric effects and corrections in marine CSEM data , 2011 .

[28]  Tage Røsten,et al.  A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media , 2008 .

[29]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[30]  Leonard J. Srnka,et al.  Special Section — Marine Controlled-Source Electromagnetic Methods An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration , 2007 .

[31]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[32]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[33]  P. Saraf,et al.  Anisotropy in Geoelectromagnetism , 1990 .

[34]  David Andreis,et al.  Sensitivity and inversion of marine electromagnetic data in a vertically anisotropic stratified earth , 2011 .

[35]  Walter L. Anderson,et al.  A hybrid fast Hankel transform algorithm for electromagnetic modeling , 1989 .