Parameter estimation for time-delay chaotic systems by hybrid biogeography-based optimization

It is an important issue to estimate parameters of chaotic systems in nonlinear science. In this paper, delay time as well as parameters of time-delay chaotic system is considered by treating delay time as an additional parameter. The parameter estimation problem is formulated as a multidimensional optimization problem, and an effective hybrid biogeography-based optimization is developed to solve this problem. Numerical simulations are conducted on two typical time-delay chaotic systems to show the effectiveness of the proposed scheme.

[1]  Zhijian Wu,et al.  Hybrid Differential Evolution Algorithm with Chaos and Generalized Opposition-Based Learning , 2010, ISICA.

[2]  Xinzhi Liu,et al.  Synchronization of non-autonomous chaotic systems with time-varying delay via delayed feedback control , 2012 .

[3]  A.N. Pisarchik,et al.  Optical Chaotic Communication Using Generalized and Complete Synchronization , 2010, IEEE Journal of Quantum Electronics.

[4]  Cheng-Shion Shieh,et al.  Hybrid control for synchronizing a chaotic system , 2011 .

[5]  Zahra Rahmani Cherati,et al.  Synchronization of different-order chaotic systems: Adaptive active vs. optimal control , 2012 .

[6]  Peng Haipeng,et al.  Parameter identification of first order time-delay chaotic system , 2007 .

[7]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[8]  Yinggan Tang,et al.  Parameter estimation of chaotic system with time-delay: A differential evolution approach , 2009 .

[9]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[10]  Junwei Wang,et al.  H∞ control of a chaotic finance system in the presence of external disturbance and input time-delay , 2014, Appl. Math. Comput..

[11]  Diyi Chen,et al.  Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme , 2012 .

[12]  Kevin Fong-Rey Liu,et al.  RETRACTED: Applications of fuzzy control to nonlinear time-delay systems using the linear matrix inequality fuzzy Lyapunov method , 2012 .

[13]  Haipeng Peng,et al.  Parameter identification of time-delay chaotic system using chaotic ant swarm , 2009 .

[14]  Qian Xu,et al.  A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems , 2012, Appl. Math. Comput..

[15]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[16]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[17]  Yinggan Tang,et al.  Parameter estimation for time-delay chaotic system by particle swarm optimization , 2009 .

[18]  Patrick Siarry,et al.  Biogeography-based optimization for constrained optimization problems , 2012, Comput. Oper. Res..

[19]  Fangfang Zhang,et al.  Self-time-delay synchronization of time-delay coupled complex chaotic system and its applications to communication , 2014 .

[20]  Wei Xu,et al.  Adaptive complete synchronization of the noise-perturbed two bi-directionally coupled chaotic systems with time-delay and unknown parametric mismatch , 2009, Appl. Math. Comput..

[21]  S. S. Thakur,et al.  Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function , 2010, Expert Syst. Appl..

[22]  K.N. Salama,et al.  Control and switching synchronization of fractional order chaotic systems using active control technique , 2013, Journal of advanced research.

[23]  A. Roy Chowdhury,et al.  Parameter estimation of a delay dynamical system using synchronization in presence of noise , 2007 .

[24]  Holger Kantz,et al.  Identifying and Modeling Delay Feedback Systems. , 1998, chao-dyn/9907019.

[25]  Chi-Chuan Hwang,et al.  Robust chaos synchronization of noise-perturbed chaotic systems with multiple time-delays , 2008 .

[26]  K. A. Shore,et al.  Synchronization in multiple time delay chaotic laser diodes subject to incoherent optical feedbacks and incoherent optical injection , 2009 .

[27]  Behrooz Rezaie,et al.  An adaptive delayed feedback control method for stabilizing chaotic time-delayed systems , 2011 .

[28]  Kehui Sun,et al.  Chaos synchronization between two different fractional-order hyperchaotic systems , 2011 .

[29]  Dan Simon,et al.  A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm , 2011, Evolutionary Computation.

[30]  D. V. Senthilkumar,et al.  Dynamics of Nonlinear Time-Delay Systems , 2011 .

[31]  Jinde Cao,et al.  Synchronization-based approach for parameters identification in delayed chaotic neural networks , 2007 .

[32]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[33]  Lifang Xu,et al.  Biogeography migration algorithm for traveling salesman problem , 2010, Int. J. Intell. Comput. Cybern..

[34]  Junqi Yang,et al.  Synchronization for chaotic systems and chaos-based secure communications via both reduced-order and step-by-step sliding mode observers , 2013, Commun. Nonlinear Sci. Numer. Simul..

[35]  P. K. Chattopadhyay,et al.  Solving complex economic load dispatch problems using biogeography-based optimization , 2010, Expert Syst. Appl..

[36]  Bishnu Charan Sarkar,et al.  Anticipatory, complete and lag synchronization of chaos and hyperchaos in a nonlinear delay-coupled time-delayed system , 2013 .

[37]  K. S. Swarup,et al.  Biogeography based optimization for optimal meter placement for security constrained state estimation , 2011, Swarm Evol. Comput..

[38]  Hui Wang,et al.  Generalised opposition-based differential evolution for frequency modulation parameter optimisation , 2013, Int. J. Model. Identif. Control..

[39]  Xin Wang,et al.  Linear feedback controller design method for time-delay chaotic systems , 2012 .

[40]  Hamid R. Tizhoosh,et al.  Opposition-Based Learning: A New Scheme for Machine Intelligence , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[41]  罗斌,et al.  Parameter estimation for chaotic systems with and without noise using differential evolution-based method , 2011 .

[42]  Guodong Zhang,et al.  Global anti-synchronization of a class of chaotic memristive neural networks with time-varying delays , 2013, Neural Networks.

[43]  S. Tong,et al.  DECENTRALIZED ROBUST CONTROL FOR UNCERTAIN T-S FUZZY LARGE-SCALE SYSTEMS WITH TIME-DELAY , 2007 .

[44]  Shaocheng Tong,et al.  Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties , 2002, Fuzzy Sets Syst..