Electron Accumulation Tuning by Surface-to-Volume Scaling of Nanostructured InN Grown on GaN(001) for Narrow-Bandgap Optoelectronics

[1]  S. Yadav,et al.  Understanding the origin of mobility enhancement in wedge-shaped c-GaN nanowall networks utilizing spectroscopic techniques , 2022, Journal of Applied Physics.

[2]  W. Ge,et al.  High electron mobility in nearly-dislocation-free hexagonal InN , 2021, Applied Physics Express.

[3]  Manal A. Aldawsari,et al.  Experiment-simulation comparison of luminescence properties of GaN/InGaN/GaN double graded structures , 2021 .

[4]  Md. Rayid Hasan Mojumder,et al.  Strong tribo-piezoelectric effect in bilayer indium nitride (InN) , 2021, Scientific Reports.

[5]  G. Salamo,et al.  Coherent-interface-induced strain in large lattice-mismatched materials: A new approach for modeling Raman shift , 2021, Nano Research.

[6]  Cong Wang,et al.  Narrow-bandgap materials for optoelectronics applications , 2021, Frontiers of Physics.

[7]  G. Salamo,et al.  Growth kinetics and nanoscale structure-property relationships of InN nanostructures on GaN(0 0 0 1) , 2021 .

[8]  Jincheng Zhang,et al.  Raman Analysis of E2 (High) and A1 (LO) Phonon to the Stress-Free GaN Grown on Sputtered AlN/Graphene Buffer Layer , 2020 .

[9]  M. González-Herráez,et al.  High-Quality, InN-Based, Saturable Absorbers for Ultrafast Laser Development , 2020 .

[10]  Z. Mi,et al.  Emerging Applications of III‐Nitride Nanocrystals , 2020, physica status solidi (a).

[11]  N. Mori,et al.  Electron mobility calculation for two-dimensional electron gas in InN/GaN digital alloy channel high electron mobility transistors , 2019, Japanese Journal of Applied Physics.

[12]  Baoping Zhang,et al.  Theoretical optimization of inhomogeneous broadening in InGaN/GaN MQWs to polariton splitting at low temperature , 2019, Superlattices and Microstructures.

[13]  K. Wijayantha,et al.  Low-cost Fabrication of Tunable Band Gap Composite Indium and Gallium Nitrides , 2019, Scientific Reports.

[14]  J. Keraudy,et al.  Low-Loss and Tunable Localized Mid-Infrared Plasmons in Nanocrystals of Highly Degenerate InN. , 2018, Nano letters.

[15]  V. Davydov,et al.  Towards the indium nitride laser: obtaining infrared stimulated emission from planar monocrystalline InN structures , 2018, Scientific Reports.

[16]  A. Bostwick,et al.  How Indium Nitride Senses Water. , 2017, Nano letters.

[17]  S. Dhara,et al.  Observation of surface plasmon polaritons in 2D electron gas of surface electron accumulation in InN nanostructures , 2017, Nanotechnology.

[18]  J. Schlager,et al.  Raman spectroscopy based measurements of carrier concentration in n-type GaN nanowires grown by plasma-assisted molecular beam epitaxy , 2016 .

[19]  Y. Hao,et al.  Spatially resolved and orientation dependent Raman mapping of epitaxial lateral overgrowth nonpolar a-plane GaN on r-plane sapphire , 2016, Scientific Reports.

[20]  J. Kortus,et al.  Raman tensor elements and Faust-Henry coefficients of wurtzite-type α-GaN: How to overcome the dilemma of the sign of Faust-Henry coefficients in α-GaN? , 2014 .

[21]  V. Russo,et al.  Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide , 2013, 1311.7028.

[22]  D. Lucca,et al.  Frequency shifts of the E2high Raman mode due to residual stress in epitaxial ZnO thin films , 2013 .

[23]  A. Vescan,et al.  Evaluation of interpolations of InN, AlN and GaN lattice and elastic constants for their ternary and quaternary alloys , 2013 .

[24]  Reshef Tenne,et al.  Spectroscopic determination of phonon lifetimes in rhenium-doped MoS2 nanoparticles. , 2013, Nano letters.

[25]  H. Petek,et al.  The effect of n- and p-type doping on coherent phonons in GaN , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  Gong-Ru Lin,et al.  Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot , 2012 .

[27]  J. Als-Nielsen,et al.  Elements of Modern X-ray Physics: Als-Nielsen/Elements , 2011 .

[28]  Z. Mi,et al.  Photoluminescence Properties of a Nearly Intrinsic Single InN Nanowire , 2010 .

[29]  J. Speck,et al.  Surface, bulk, and interface electronic properties of nonpolar InN , 2010 .

[30]  Y. Nanishi,et al.  Raman scattering study of background electron density in InN: a hydrodynamical approach to the LO-phonon–plasmon coupled modes , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  B. Gil,et al.  The determination of the bulk residual doping in indium nitride films using photoluminescence , 2009 .

[32]  W. Schaff,et al.  In-adlayers on non-polar and polar InN surfaces: Ion scattering and photoemission studies , 2007 .

[33]  Xiaodong Wang,et al.  Experimental determination of strain-free raman frequencies and deformation potentials for the E2 high and A1(LO) modes in hexagonal InN , 2006 .

[34]  W. Schaff,et al.  Inversion and accumulation layers at InN surfaces , 2006 .

[35]  H. Hirshy,et al.  Stoichiometry effects and the Moss–Burstein effect for InN , 2006 .

[36]  Qing Yang,et al.  Effects of stoichiometry on electrical, optical, and structural properties of indium nitride , 2005 .

[37]  K. Tsagaraki,et al.  Physical model of InN growth on Ga-face GaN (0001) by molecular-beam epitaxy , 2005 .

[38]  W. Schaff,et al.  Deformation potentials of the E1(TO) and E2 modes of InN , 2004 .

[39]  O. Ambacher,et al.  Correlation between strain, optical and electrical properties of InN grown by MBE , 2003 .

[40]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[41]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[42]  A. N. Smirnov,et al.  Experimental and theoretical studies of phonons in hexagonal InN , 1999 .

[43]  Arthur J. Nozik,et al.  Size-Dependent Spectroscopy of InP Quantum Dots , 1997 .

[44]  Tanakorn Osotchan,et al.  Electron mobilities in gallium, indium, and aluminum nitrides , 1994 .

[45]  Ullrich Pietsch,et al.  High-Resolution X-Ray Scattering , 2004 .