Robust mixed one-bit compressive sensing

[1]  Farrokh Marvasti,et al.  Robust Sparse Recovery in Impulsive Noise via Continuous Mixed Norm , 2018, IEEE Signal Processing Letters.

[2]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[3]  Kristian Bredies,et al.  Total Generalized Variation in Diffusion Tensor Imaging , 2013, SIAM J. Imaging Sci..

[4]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..

[5]  Yaniv Plan,et al.  Robust 1-bit Compressed Sensing and Sparse Logistic Regression: A Convex Programming Approach , 2012, IEEE Transactions on Information Theory.

[6]  Ming Yan,et al.  Non-convex Penalties with Analytical Solutions for One-bit Compressive Sensing , 2017, Signal Process..

[7]  Michael K. Ng,et al.  Inexact Alternating Direction Methods for Image Recovery , 2011, SIAM J. Sci. Comput..

[8]  Xin Jin,et al.  A limited-angle CT reconstruction method based on anisotropic TV minimization , 2013, Physics in medicine and biology.

[9]  Mehdi Korki,et al.  Double Detector for Sparse Signal Detection From One-Bit Compressed Sensing Measurements , 2016, IEEE Signal Processing Letters.

[10]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[11]  Hengyong Yu,et al.  A soft-threshold filtering approach for reconstruction from a limited number of projections , 2010, Physics in medicine and biology.

[12]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[13]  J. Hsieh,et al.  A novel reconstruction algorithm to extend the CT scan field-of-view. , 2004, Medical physics.

[14]  M. Kachelriess,et al.  Improved total variation-based CT image reconstruction applied to clinical data , 2011, Physics in medicine and biology.

[15]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[16]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[17]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[18]  Ming Yan,et al.  Robust 1-bit Compressive Sensing Using Adaptive Outlier Pursuit , 2012, IEEE Transactions on Signal Processing.

[19]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[20]  Richard G. Baraniuk,et al.  Democracy in Action: Quantization, Saturation, and Compressive Sensing , 2011 .

[21]  J. Feng Sensor saturation effects on NLTS measurements [of magnetoresistive sensors] , 1998 .

[22]  Farrokh Marvasti,et al.  Sparse recovery of missing image samples using a convex similarity index , 2018, Signal Process..

[23]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[24]  Stephen J. Wright,et al.  Robust Dequantized Compressive Sensing , 2012, ArXiv.

[25]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[26]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[27]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[28]  Laurent Jacques,et al.  Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors , 2011, IEEE Transactions on Information Theory.

[29]  Zongben Xu,et al.  $L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[30]  Ion Necoara,et al.  On the Convergence of Inexact Projection Primal First-Order Methods for Convex Minimization , 2018, IEEE Transactions on Automatic Control.

[31]  Yunhua Zhang,et al.  A MAP Approach for 1-Bit Compressive Sensing in Synthetic Aperture Radar Imaging , 2015, IEEE Geoscience and Remote Sensing Letters.

[32]  Mehdi Korki,et al.  A Distributed 1-bit Compressed Sensing Algorithm Robust to Impulsive Noise , 2016, IEEE Communications Letters.

[33]  Yudong Zhang,et al.  AM-AFM System Analysis and Output Feedback Control Design With Sensor Saturation , 2013 .

[34]  Jinfeng Yi,et al.  Efficient Algorithms for Robust One-bit Compressive Sensing , 2014, ICML.

[35]  Sabine Van Huffel,et al.  Two-level ℓ1 minimization for compressed sensing , 2015, Signal Process..

[36]  G. Cardoso,et al.  CT Saturation Detection Based on the Distance Between Consecutive Points in the Plans Formed by the Secondary Current Samples and Their Difference-Functions , 2013, IEEE Transactions on Power Delivery.

[37]  Jun Fang,et al.  Robust One-Bit Bayesian Compressed Sensing with Sign-Flip Errors , 2015, IEEE Signal Processing Letters.

[38]  Ming Yan,et al.  Self Equivalence of the Alternating Direction Method of Multipliers , 2014, 1407.7400.

[39]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[40]  Raymond H. Chan,et al.  Alternating Direction Method for Image Inpainting in Wavelet Domains , 2011, SIAM J. Imaging Sci..

[41]  Wotao Yin,et al.  Trust, But Verify: Fast and Accurate Signal Recovery From 1-Bit Compressive Measurements , 2011, IEEE Transactions on Signal Processing.

[42]  A. Kak,et al.  Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm , 1984, Ultrasonic imaging.

[43]  Quanquan Gu,et al.  Towards a Lower Sample Complexity for Robust One-bit Compressed Sensing , 2015, ICML.

[44]  Richard G. Baraniuk,et al.  1-Bit compressive sensing , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.