Route Planning in Road Networks

The continuously increasing demand for mobility more and more frequently asks for the best driving directions to one's destination saving time and money. Using simple-minded approaches to the computation of suitable routes yields slow response times or suboptimal results. Therefore, there is considerable interest in exact and fast speedup techniques, which typically invest some time into a preprocessing step in order to generate auxiliary data that can be used to accelerate all subsequent route planning queries. We present three highly-efficient and provably accurate point-to-point route planning algorithms and one generic many-to-many approach, which computes for given source and target node sets the optimal distances between all source-target node pairs in a very efficient way. The performance is evaluated in an extensive experimental study using large real-world road networks with up to 33 million junctions. This book addresses students, researchers, and software developers that are interested in car navigation systems, route planning services, logistics, or any other application where route planning in road networks plays a crucial role.

[1]  Daniele Frigioni,et al.  Maintenance of Multi-level Overlay Graphs for Timetable Queries , 2007, ATMOS.

[2]  Rolf H. Möhring,et al.  Partitioning Graphs to Speed Up Dijkstra's Algorithm , 2005, WEA.

[3]  Frank Schulz,et al.  Timetable information and shortest paths , 2005 .

[4]  Ulrik Brandes,et al.  Travel Planning with Self-Made Maps , 2001, ALENEX.

[5]  Kurt Mehlhorn,et al.  Faster algorithms for the shortest path problem , 1990, JACM.

[6]  Rolf H. Möhring,et al.  Acceleration of Shortest Path and Constrained Shortest Path Computation , 2005, WEA.

[7]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[8]  Thambipillai Srikanthan,et al.  Heuristic techniques for accelerating hierarchical routing on road networks , 2002, IEEE Trans. Intell. Transp. Syst..

[9]  Peter Sanders,et al.  Fast Routing in Road Networks with Transit Nodes , 2007, Science.

[10]  Sakti Pramanik,et al.  An Efficient Path Computation Model for Hierarchically Structured Topographical Road Maps , 2002, IEEE Trans. Knowl. Data Eng..

[11]  Swastik Kopparty,et al.  TO PLANAR GRAPHS , 2010 .

[12]  Sebastian Knopp,et al.  Efficient Computation of Many-to-Many Shortest Paths , 2006 .

[13]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[14]  Philippe Baptiste,et al.  Fast paths in large-scale dynamic road networks , 2007, Comput. Optim. Appl..

[15]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[16]  Dorothea Wagner,et al.  Engineering multilevel overlay graphs for shortest-path queries , 2009, JEAL.

[17]  Peter Sanders,et al.  Dynamic Highway-Node Routing , 2007, WEA.

[18]  Dorothea Wagner,et al.  Drawing Graphs to Speed Up Shortest-Path Computations , 2005, ALENEX/ANALCO.

[19]  Peter Sanders,et al.  Computing Many-to-Many Shortest Paths Using Highway Hierarchies , 2007, ALENEX.

[20]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[21]  Mikkel Thorup,et al.  Integer priority queues with decrease key in constant time and the single source shortest paths problem , 2003, STOC '03.

[22]  Dorothea Wagner,et al.  Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs , 2003, ESA.

[23]  Frank Schulz,et al.  Fast and Exact Shortest Path Queries Using Highway Hierarchies , 2005 .

[24]  I-Lin Wang,et al.  Shortest paths and multicommodity network flows , 2003 .

[25]  Sushant Sachdeva,et al.  I/O Efficieny of Highway Hierarchies , 2006 .

[26]  Jeremy G. Siek,et al.  The Boost Graph Library - User Guide and Reference Manual , 2001, C++ in-depth series.

[27]  Elke A. Rundensteiner,et al.  Hierarchical optimization of optimal path finding for transportation applications , 1996, CIKM '96.

[28]  Karsten Weihe,et al.  Dijkstra's algorithm on-line: an empirical case study from public railroad transport , 2000, JEAL.

[29]  Peter Sanders,et al.  In Transit to Constant Time Shortest-Path Queries in Road Networks , 2007, ALENEX.

[30]  Elke A. Rundensteiner,et al.  Hierarchical Encoded Path Views for Path Query Processing: An Optimal Model and Its Performance Evaluation , 1998, IEEE Trans. Knowl. Data Eng..

[31]  S. Azuma,et al.  Map navigation software of the electro-multivision of the '91 Toyoto Soarer , 1991, Vehicle Navigation and Information Systems Conference, 1991.

[32]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[33]  Mikkel Thorup,et al.  Undirected single source shortest paths in linear time , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[34]  Sakti Pramanik,et al.  HiTi graph model of topographical road maps in navigation systems , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[35]  Daniel Delling,et al.  SHARC: Fast and robust unidirectional routing , 2008, JEAL.

[36]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2006, J. Comput. Syst. Sci..

[37]  Peter Sanders,et al.  Engineering Fast Route Planning Algorithms , 2007, WEA.

[38]  Dorothea Wagner,et al.  Engineering Multi-Level Overlay Graphs for Shortest-Path Queries , 2006, ALENEX.

[39]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[40]  Andrew V. Goldberg,et al.  A Simple Shortest Path Algorithm with Linear Average Time , 2001, ESA.

[41]  Dorothea Wagner,et al.  Combining speed-up techniques for shortest-path computations , 2004, JEAL.

[42]  Ulrich Lauther,et al.  An Experimental Evaluation of Point-To-Point Shortest Path Calculation on Road Networks with Precalculated Edge-Flags , 2006, The Shortest Path Problem.

[43]  Frank Schulz,et al.  High-Performance Multi-Level Graphs ∗ , 2006 .

[44]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[45]  Rolf H. Möhring,et al.  Fast Point-to-Point Shortest Path Computations with Arc-Flags , 2006, The Shortest Path Problem.

[46]  Ronald J. Gutman,et al.  Reach-Based Routing: A New Approach to Shortest Path Algorithms Optimized for Road Networks , 2004, ALENEX/ANALC.

[47]  Thomas Willhalm,et al.  Engineering shortest paths and layout algorithms for large graphs , 2005 .

[48]  Dorothea Wagner,et al.  Landmark-Based Routing in Dynamic Graphs , 2007, WEA.

[49]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.

[50]  Peter Sanders,et al.  Goal Directed Shortest Path Queries Using Precomputed Cluster Distances , 2006, WEA.

[51]  Haim Kaplan,et al.  Reach for A*: Efficient Point-to-Point Shortest Path Algorithms , 2006, ALENEX.

[52]  Andrew V. Goldberg,et al.  Computing Point-to-Point Shortest Paths from External Memory , 2005, ALENEX/ANALCO.

[53]  Peter Sanders,et al.  Mobile Route Planning , 2008, ESA.

[54]  Ulrich Meyer,et al.  Single-source shortest-paths on arbitrary directed graphs in linear average-case time , 2001, SODA '01.

[55]  Peter Sanders,et al.  Engineering highway hierarchies , 2006, JEAL.

[56]  Karsten Weihe,et al.  Dijkstra's algorithm on-line: an empirical case study from public railroad transport , 1999, JEAL.

[57]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[58]  Dorothea Wagner,et al.  14. Experimental Study on Speed-Up Techniques for Timetable Information Systems , 2007 .

[59]  A. Goldberg,et al.  TRANSIT: Ultrafast Shortest-Path Queries with Linear-Time Preprocessing , 2006 .

[60]  D. Delling Design and Implementation of an Efficient Hierarchical Speed-up Technique for Computation of Exact Shortest Paths in Graphs , 2006 .

[61]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[62]  Riko Jacob,et al.  I/O efficiency of highway hierarchies , 2006 .

[63]  Andrew V. Goldberg,et al.  Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.

[64]  Peter Sanders,et al.  Highway Hierarchies Hasten Exact Shortest Path Queries , 2005, ESA.

[65]  Dorothea Wagner,et al.  Experimental study of speed up techniques for timetable information systems , 2011, Networks.

[66]  Hiroshi Imai,et al.  A fast algorithm for finding better routes by AI search techniques , 1994, Proceedings of VNIS'94 - 1994 Vehicle Navigation and Information Systems Conference.

[67]  Peter Sanders,et al.  Highway Hierarchies Star , 2006, The Shortest Path Problem.

[68]  Peter van Emde Boas,et al.  Design and implementation of an efficient priority queue , 1976, Mathematical systems theory.

[69]  Ulrik Brandes,et al.  Generating node coordinates for shortest-path computations in transportation networks , 2004, JEAL.

[70]  Mikkel Thorup,et al.  On RAM priority queues , 1996, SODA '96.

[71]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[73]  Frank Schulz,et al.  Using Multi-Level Graphs for Timetable Information , 2001 .

[74]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[75]  I C M Ingrid Flinsenberg,et al.  Route Planning Algorithms for Car Navigation , 2009 .

[76]  Peter Sanders,et al.  Robust, Almost Constant Time Shortest-Path Queries in Road Networks , 2006, The Shortest Path Problem.

[77]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..