Mixture of time‐dependent growth models with an application to blue swimmer crab length‐frequency data

Understanding how aquatic species grow is fundamental in fisheries because stock assessment often relies on growth dependent statistical models. Length‐frequency‐based methods become important when more applicable data for growth model estimation are either not available or very expensive. In this article, we develop a new framework for growth estimation from length‐frequency data using a generalized von Bertalanffy growth model (VBGM) framework that allows for time‐dependent covariates to be incorporated. A finite mixture of normal distributions is used to model the length‐frequency cohorts of each month with the means constrained to follow a VBGM. The variances of the finite mixture components are constrained to be a function of mean length, reducing the number of parameters and allowing for an estimate of the variance at any length. To optimize the likelihood, we use a minorization–maximization (MM) algorithm with a Nelder–Mead sub‐step. This work was motivated by the decline in catches of the blue swimmer crab (BSC) (Portunus armatus) off the east coast of Queensland, Australia. We test the method with a simulation study and then apply it to the BSC fishery data.

[1]  A. Punt,et al.  Estimating growth within size-structured fishery stock assessments: What is the state of the art and what does the future look like? , 2016 .

[2]  Geoffrey J. McLachlan,et al.  Laplace mixture of linear experts , 2016, Comput. Stat. Data Anal..

[3]  Adrian E. Raftery,et al.  Normal Mixture Modelling for Model-Based Clustering,Classification, and Density Estimation , 2015 .

[4]  N. Bousquet,et al.  An integrated Bayesian modeling approach for the growth of Indian Ocean yellowfin tuna , 2015 .

[5]  Luke R. Lloyd-Jones,et al.  Improved estimation of size-transition matrices using tag-recapture data , 2014 .

[6]  Luke R. Lloyd-Jones,et al.  Generalised growth models for aquatic species with an application to blacklip abalone (Haliotis rubra) , 2014 .

[7]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[8]  Ta-Hsin Li,et al.  Maximum Likelihood Approach , 2013 .

[9]  Geoffrey J. McLachlan,et al.  On mixtures of skew normal and skew $$t$$-distributions , 2012, Adv. Data Anal. Classif..

[10]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[11]  R. Goñi,et al.  Tag loss in the lobster Palinurus elephas (Fabricius, 1787) and implications for population assessment with capture-mark-recapture methods , 2012 .

[12]  N. Caputi,et al.  Decline of a blue swimmer crab (Portunus pelagicus) fishery in Western Australia—History, contributing factors and future management strategy , 2011 .

[13]  K. Lange,et al.  MM Algorithms for Some Discrete Multivariate Distributions , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[14]  M. Haddon,et al.  Using length data in the Schnute Model to describe growth in a metapenaeid from waters off Australia , 2010 .

[15]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[16]  G. McLachlan,et al.  The EM Algorithm and Extensions: Second Edition , 2008 .

[17]  G. Laslett,et al.  Consequences of assuming an incorrect error structure in von Bertalanffy growth models: a simulation study , 2007 .

[18]  J. M. Muñoz-Pichardo,et al.  On the consistency of MLE in finite mixture models of exponential families , 2007 .

[19]  R. Steele,et al.  Optimization , 2005, Encyclopedia of Biometrics.

[20]  Tom Polacheck,et al.  An integrated model for growth incorporating tag-recapture, length-frequency, and direct aging data , 2004 .

[21]  D. Hunter,et al.  A Tutorial on MM Algorithms , 2004 .

[22]  Tom Polacheck,et al.  Fitting growth models to length frequency data , 2004 .

[23]  Yongshun Xiao,et al.  Reproductive cycle of the blue swimmer crab, Portunus pelagicus, off southern Australia , 2003, Journal of the Marine Biological Association of the United Kingdom.

[24]  I. Potter,et al.  Reproductive biology of the blue swimmer crab (Portunus pelagicus, Decapoda: Portunidae) in five bodies of water on the west coast of Australia , 2003 .

[25]  R. McPherson Assessment of T bar anchor tags for marking the Blue Swimmer Crab Portunus pelagicus (L.) , 2002 .

[26]  C. Walters,et al.  The von Bertalanffy growth function, bioenergetics, and the consumption rates of fish , 2001 .

[27]  Changes in growth of juvenile southern bluefin tuna (Thunnus maccoyii): an analysis of length-frequency data from the Australian fishery , 2000 .

[28]  You‐Gan Wang Estimating Equations for Parameters in Stochastic Growth Models from Tag–Recapture Data , 1999, Biometrics.

[29]  Adrian E. Raftery,et al.  MCLUST: Software for Model-Based Cluster Analysis , 1999 .

[30]  David A. Fournier,et al.  MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga , 1998 .

[31]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[32]  You‐Gan Wang,et al.  A simple method for estimating growth parameters from multiple length-frequency data in presence of continuous recruitment , 1996 .

[33]  You‐Gan Wang,et al.  A maximum likelihood approach for estimating growth from tag–recapture data , 1995 .

[34]  M. Potter,et al.  Parasitism of the commercial sand crab Portunus pelagicus (L.) by the rhizocephalan Sacculina granifera Boschma, 1973 in Moreton Bay, Queensland, Australia , 1994 .

[35]  A. R. De Pierro,et al.  On the relation between the ISRA and the EM algorithm for positron emission tomography , 1993, IEEE Trans. Medical Imaging.

[36]  D. Andrews Generic Uniform Convergence , 1992, Econometric Theory.

[37]  Donald A. Jackson,et al.  A Comparison of von Bertalanffy and Polynomial Functions in Modelling Fish Growth Data , 1992 .

[38]  M. Potter,et al.  Movement, fishery sector impact, and factors affecting the recapture rate of tagged sand crabs, Portunus pelagicus (L.), in Moreton Bay, Queensland , 1991 .

[39]  D. Pauly,et al.  Length-based methods in fisheries research , 1987 .

[40]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[41]  N. Loneragan,et al.  The biology of the blue manna crab Portunus pelagicus in an Australian estuary , 1983 .

[42]  Tony J. Pitcher,et al.  Age-Groups from Size-Frequency Data: A Versatile and Efficient Method of Analyzing Distribution Mixtures , 1979 .

[43]  Daniel Pauly,et al.  Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy's growth formula , 1979 .

[44]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[45]  H. Akaike A new look at the statistical model identification , 1974 .

[46]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[47]  Rupert G. Miller The jackknife-a review , 1974 .

[48]  J. Mcdonagh,et al.  THE REPRODUCTIVE CYCLE , 1966 .

[49]  Fabens Aj,et al.  Properties and fitting of the Von Bertalanffy growth curve. , 1965 .

[50]  A. J. Fabens,et al.  Properties and fitting of the Von Bertalanffy growth curve. , 1965, Growth.

[51]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[52]  W. Ricker Stock and Recruitment , 1954 .

[53]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[54]  L. Bertalanffy,et al.  A quantitative theory of organic growth , 1938 .