A Multilevel Jacobi--Davidson Method for Polynomial PDE Eigenvalue Problems Arising in Plasma Physics

The simulation of drift instabilities in the plasma edge leads to cubic polynomial PDE eigenvalue problems with parameter dependent coefficients. The aim is to determine the wave number which leads to the maximum growth rate of the amplitude of the wave. This requires the solution of a large number of PDE eigenvalue problems. Since we are only interested in a smooth eigenfunction corresponding to the eigenvalue with largest imaginary part, the Jacobi-Davidson method can be applied. Unfortunately, a naive implementation of this method is much too expensive for the large number of problems that have to be solved. In this paper we will present a multilevel approach for the construction of an appropriate initial search space. We will also discuss the efficient solution of the correction equation, and we will show how optimal scaling helps to accelerate the convergence.

[1]  Ronald H. Cohen,et al.  Resistive X-point modes in tokamak boundary plasmas , 2000 .

[2]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[3]  J. Weiland Analytical eigenvalue solution for ηi modes of general modewidth , 2004 .

[4]  Nicholas J. Higham,et al.  Backward Error of Polynomial Eigenproblems Solved by Linearization , 2007, SIAM J. Matrix Anal. Appl..

[5]  Zhaojun Bai,et al.  Solving Rational Eigenvalue Problems via Linearization , 2011, SIAM J. Matrix Anal. Appl..

[6]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .

[7]  M. Z. Tokar,et al.  Role of thermal instabilities and anomalous transport in threshold of detachment and multifacetted asymmetric radiation from the edge (MARFE) , 2005 .

[8]  H. V. D. Vorst,et al.  EFFICIENT EXPANSION OF SUBSPACES IN THE JACOBI-DAVIDSON METHOD FOR STANDARD AND GENERALIZED EIGENPROBLEMS , 1998 .

[9]  A. Ostrowski On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. V , 1959 .

[10]  Frann Coise Tisseur Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .

[11]  Heinrich Voss,et al.  A new justification of the Jacobi–Davidson method for large eigenproblems , 2007 .

[12]  M. Hochstenbach,et al.  Two-sided and alternating Jacobi-Davidson , 2001 .

[13]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[14]  An Improved Jacobi-Davidson Method With Multi-Level Startup Procedure , 2009, IEEE Transactions on Magnetics.

[15]  D. Löchel Numerical methods for eigenvalue problems in the description of drift instabilities in the plasma edge , 2009 .

[16]  Heinrich Voß,et al.  A LOCAL RESTART PROCEDURE FOR ITERATIVE PROJECTION METHODS FOR NONLINEAR SYMMETRIC EIGENPROBLEMS , 2004 .

[17]  R. Cohen,et al.  Resistive modes in the edge and scrape-off layer of diverted tokamaks , 2000 .

[18]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[19]  Daniel Kressner,et al.  Numerical Methods for General and Structured Eigenvalue Problems , 2005, Lecture Notes in Computational Science and Engineering.

[20]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[21]  Timo Betcke,et al.  A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[24]  Timo Betcke,et al.  Optimal Scaling of Generalized and Polynomial Eigenvalue Problems , 2008, SIAM J. Matrix Anal. Appl..

[25]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[26]  Daniel Kressner,et al.  A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.

[27]  M. Hochbruck,et al.  Effect of poloidal inhomogeneity in plasma parameters on edge anomalous transport , 2009 .

[28]  Nicholas J. Higham,et al.  The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[29]  Kathrin Schreiber,et al.  Nonlinear Eigenvalue Problems: Newton-type Methods and Nonlinear Rayleigh Functionals , 2008 .

[30]  B. Parlett The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .

[31]  Wolf-Jürgen Beyn,et al.  Continuation of Invariant Subspaces for Parameterized Quadratic Eigenvalue Problems , 2009, SIAM J. Matrix Anal. Appl..

[32]  J. P. Goedbloed,et al.  Generalized ballooning and sheath instabilities in the scrape-off layer of divertor tokamaks , 1997 .

[33]  Karl Meerbergen,et al.  Locking and Restarting Quadratic Eigenvalue Solvers , 2000, SIAM J. Sci. Comput..