Rotation invariant texture classification using Support Vector Machines

In this paper, we study the problem of rotation invariant texture classifications. There are several methods in texture recognition problem, we compare three best known methods such us: Gabor wavelet filter, Local Binary Pattern operators (LBP) and co-occurrence matrix (GLCM). A multi-class Support Vector Machines (SVM) is used as a classifier. The three methods are evaluated based on two different databases: Brodatz and Outex to bring out a comparative study about the discrimination capabilities of those different families of texture classification methods. The experimental results show that some of the studied methods are more compatible with this classification problem than the others. The SVM classifier approve the running time of the algorithm of classification.

[1]  Calvin C. Gotlieb,et al.  Texture descriptors based on co-occurrence matrices , 1990, Comput. Vis. Graph. Image Process..

[2]  Matti Pietikäinen,et al.  Rotation-invariant texture classification using feature distributions , 2000, Pattern Recognit..

[3]  Salem Nasri,et al.  Automatic recognition of woven fabrics based on texture and using SVM , 2010, Signal Image Video Process..

[4]  Alexander J. Smola,et al.  Boîte à outils SVM simple et rapide , 2005, Rev. d'Intelligence Artif..

[5]  Jake K. Aggarwal,et al.  AnEmpirical Evaluation ofGeneralized Cooccurrence Matrices , 1981 .

[6]  M. R. Turner,et al.  Texture discrimination by Gabor functions , 1986, Biological Cybernetics.

[7]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[8]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[10]  Arivazhagan Selvaraj,et al.  Texture classification using wavelet transform , 2003, Pattern Recognit. Lett..

[11]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Hélène Laurent,et al.  Comparative study of texture feature for rotation invariant RECOGNITION , 2007, 2007 15th European Signal Processing Conference.

[13]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[14]  R. Nevatia,et al.  Structural Texture Analysis Applications , 1982 .

[15]  Wilson S. Geisler,et al.  Texture segmentation using Gabor modulation/demodulation , 1987, Pattern Recognit. Lett..

[16]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Rama Chellappa,et al.  Classification of textures using Gaussian Markov random fields , 1985, IEEE Trans. Acoust. Speech Signal Process..