Development of an inorganic cesium carbonate-based electron transport material for a 17% power conversion efficiency perovskite solar cell device

Abstract. A low-temperature solution process technique is employed to develop an inorganic cesium carbonate (Cs2CO3) as an electron transport material for inorganic–organic hybrid double cation (FAPbI3)0.85(MAPbBr3)0.15 perovskite solar cells, as an alternative to the conventional thick and meso-TiO2. A device structure of compact-TiO2/Cs2CO3 (0.2 wt. %)/perovskite/spiro-OMETAD leads to enhanced performance of the photovoltaic device, achieving a short-circuit current density (Jsc) of 22.26  mA/cm2, an open-circuit voltage (Voc) of 1054 mV, a fill factor (FF) of 71.6%, and a power conversion efficiency (PCE) of about 17% under one sun illumination, whereas the controlled device structure shows an efficiency of 16.58% without such surface modification layer. Additionally, a device structure of Cs2CO3 (6 wt. %)/perovskite/spiro-OMETAD without any TiO2 ETM has shown a Jsc of 15.40  mA/cm2, Voc of 1023 mV, FF of 51.7%, and a PCE of 8.14%. On the other hand, external quantum efficiency (EQE) data yields around 85% of incident photon to electron conversion for c-TiO2/Cs2CO3 (0.2 wt. %)/perovskite/spiro-OMETAD structure and integrated Jsc extracted from EQE data confirms that Jsc obtained from the current–voltage test is within a close agreement. The obtained results indicate that there is a possibility to further increase the performance of perovskite-based cells and reduce their processing cost by replacing the thick mesoporous TiO2 by Cs2CO3.

[1]  Fujun Zhang,et al.  UV-Ozone Treatment on Cs2CO3 Interfacial Layer for the Improvement of Inverted Polymer Solar Cells , 2013 .

[2]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[3]  Junyoung Kim,et al.  Study of the Cesium Carbonate (Cs2CO3) Inter Layer Fabricated by Solution Process on P3HT:PCBM Solar Cells , 2011 .

[4]  Pham Thi Thu Trang,et al.  Perovskite Solar Cells , 2019, Organic, Hybrid, and Perovskite Photovoltaics XXII.

[5]  Shui-Tong Lee,et al.  The role of cesium carbonate on the electron injection and transport enhancement in organic layer by admittance spectroscopy , 2012 .

[6]  Yongli Gao,et al.  In situ surface modification of TiO2 by CaTiO3 to improve the UV stability and power conversion efficiency of perovskite solar cells , 2019 .

[7]  Du Xiang,et al.  Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus , 2015, Nature Communications.

[8]  Jianmin Shi,et al.  Temperature dependence of cesium carbonate-doped electron transporting layers on organic light-emitting diodes , 2015 .

[9]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[10]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[11]  Liying Yang,et al.  Effect of cathode buffer layer on the stability of polymer bulk heterojunction solar cells , 2010 .

[12]  Angelo Fernando Padilha,et al.  Nucleation and growth during recrystallization , 2005 .

[13]  Yasemin Saygili,et al.  Boosting the Efficiency of Perovskite Solar Cells with CsBr‐Modified Mesoporous TiO2 Beads as Electron‐Selective Contact , 2018 .

[14]  Zhe Liu,et al.  Surface Modification of SnO2 via MAPbI3 Nanowires for a Highly Efficient Non-Fullerene Acceptor based Organic Solar Cell. , 2020, ACS applied materials & interfaces.

[15]  Sandeep Kumar Pathak,et al.  ZrO2/TiO2 Electron Collection Layer for Efficient Meso-Superstructured Hybrid Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[16]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[17]  A. Abate,et al.  Enhancement in lifespan of halide perovskite solar cells , 2019, Energy & Environmental Science.

[18]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[19]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[20]  Hairui Liu,et al.  Enhanced performance of planar perovskite solar cells via incorporation of Bphen/Cs2CO3-MoO3 double interlayers , 2016 .

[21]  Jin Jang,et al.  Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics , 2014, Nanoscale Research Letters.

[22]  Xudong Guo,et al.  Cesium carbonate as a surface modification material for organic–inorganic hybrid perovskite solar cells with enhanced performance , 2014 .

[23]  Seong Sik Shin,et al.  Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells , 2019, Energy & Environmental Science.

[24]  E. Sargent Perovskite LEDs , 2021, Organic and Hybrid Light Emitting Materials and Devices XXV.

[25]  Kwanghee Lee,et al.  Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer , 2014 .

[26]  M. M. Byranvand,et al.  p‐Type CuI Islands on TiO2 Electron Transport Layer for a Highly Efficient Planar‐Perovskite Solar Cell with Negligible Hysteresis , 2018 .

[27]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[28]  Chun-Yuan Huang,et al.  Interface Modification by Cs2CO3 Buffer Layer in Electroluminescent Quantum Dot Light-Emitting Diodes with Metal-Oxide Carrier Transport Layers , 2013, International Journal of Electrochemical Science.

[29]  F. Giordano,et al.  Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells , 2016, Nature Communications.

[30]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[31]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[32]  Yang Yang,et al.  Low‐Work‐Function Surface Formed by Solution‐Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate , 2007 .

[33]  N. Park,et al.  Impact of Interfacial Layers in Perovskite Solar Cells. , 2017, ChemSusChem.

[34]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[35]  F. Alharbi,et al.  Simulation Of Perovskite Based Solar Cells Using Amps And Scaps Codes , 2014 .

[36]  Fang-Chung Chen,et al.  Cesium carbonate as a functional interlayer for polymer photovoltaic devices , 2008 .

[37]  F. Alharbi,et al.  Perovskite based solar cells: A milestone towards cheaper PV technology , 2014, 3rd International Symposium on Environmental Friendly Energies and Applications (EFEA).

[38]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[39]  Kang-Pil Kim,et al.  Efficient TiO2 Surface Treatment Using Cs2CO3 for Solution-Processed Planar-Type Sb2S3 Solar Cells , 2019, Nanoscale Research Letters.

[40]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[41]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .