The design and evaluation of a query processing architecture for sensor networks

With the advent of small, battery-powered, wireless computing and sensing technology, it is now possible to monitor and observe the world at unprecedented levels of granularity. Networks of such devices typically consist of tens or hundreds of small, power constrained nodes deployed in remote locations which they are expected to monitor for months or years at a time. Such networks present significant new opportunities for the data management community. In this dissertation, we summarize the issues and opportunities associated with collecting and processing information from these wireless sensor networks, focusing on the performance and ease-of-use advantages of a declarative, query-based approach. We present the architecture of a query processing system and design of a query language specifically tailored towards power-efficient acquisition and in-network processing of sensor data, with a focus on issues related to minimizing unnecessary communication and sensing. We present many of these ideas in the context of TinyDB, a prototype database system which runs on networks of Berkeley Motes, and evaluate them using both performance micro-benchmarks and measurements from real-world deployments.

[1]  Jeffrey Scott Vitter,et al.  Wavelet-based histograms for selectivity estimation , 1998, SIGMOD '98.

[2]  Kevin R. Fall,et al.  A delay-tolerant network architecture for challenged internets , 2003, SIGCOMM '03.

[3]  Kenneth L. Calvert,et al.  Lightweight network support for scalable end-to-end services , 2002, SIGCOMM 2002.

[4]  David E. Culler,et al.  Taming the underlying challenges of reliable multihop routing in sensor networks , 2003, SenSys '03.

[5]  Sanjoy Paul,et al.  Reliable Multicast Transport Protocol (RMTP) , 1997, IEEE J. Sel. Areas Commun..

[6]  Deborah Estrin,et al.  An energy-efficient MAC protocol for wireless sensor networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[7]  Tomasz Imielinski,et al.  Querying in Highly Mobile Distributed Environments , 1992, VLDB.

[8]  Jens Grossklags,et al.  Resilient Data-Centric Storage in Wireless Sensor Networks , 2003, IEEE Distributed Syst. Online.

[9]  Rafael Alonso,et al.  Query optimization in mobile environments , 1993 .

[10]  Eric N. Hanson,et al.  The Design and Implementation of the Ariel Active Database Rule System , 1996, IEEE Trans. Knowl. Data Eng..

[11]  Michael Stonebraker,et al.  The POSTGRES next generation database management system , 1991, CACM.

[12]  Young-Jin Kim,et al.  Multi-dimensional range queries in sensor networks , 2003, SenSys '03.

[13]  Deborah Estrin,et al.  GHT: a geographic hash table for data-centric storage , 2002, WSNA '02.

[14]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[15]  Helen J. Wang,et al.  Online aggregation , 1997, SIGMOD '97.

[16]  Philippe Bonnet,et al.  GADT: a probability space ADT for representing and querying the physical world , 2002, Proceedings 18th International Conference on Data Engineering.

[17]  M. S. Corson,et al.  A highly adaptive distributed routing algorithm for mobile wireless networks , 1997, Proceedings of INFOCOM '97.

[18]  Deborah Estrin,et al.  Building efficient wireless sensor networks with low-level naming , 2001, SOSP.

[19]  Toshihide Ibaraki,et al.  On the optimal nesting order for computing N-relational joins , 1984, TODS.

[20]  Deborah Estrin,et al.  Habitat monitoring: application driver for wireless communications technology , 2001, SIGCOMM LA '01.

[21]  Paul Horowitz,et al.  The Art of Electronics - 2nd Edition , 1989 .

[22]  Cameron Whitehouse The Design of Calamari : an Ad-hoc Localization System for Sensor Networks , 2002 .

[23]  Wei Hong,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Tag: a Tiny Aggregation Service for Ad-hoc Sensor Networks , 2022 .

[24]  Beng Chin Ooi,et al.  Online Feedback for Nested Aggregate Queries with Multi-Threading , 1999, VLDB.

[25]  Richard T. Snodgrass,et al.  The TSQL2 Temporal Query Language , 1995 .

[26]  Frederick Reiss,et al.  TelegraphCQ: Continuous Dataflow Processing for an Uncertain World , 2003, CIDR.

[27]  Per-Åke Larson,et al.  Eager Aggregation and Lazy Aggregation , 1995, VLDB.

[28]  Johannes Gehrke,et al.  Query Processing in Sensor Networks , 2003, CIDR.

[29]  Peter J. Haas,et al.  The New Jersey Data Reduction Report , 1997 .

[30]  Joseph M. Hellerstein,et al.  Eddies: continuously adaptive query processing , 2000, SIGMOD 2000.

[31]  Feng Zhao,et al.  Scalable Information-Driven Sensor Querying and Routing for Ad Hoc Heterogeneous Sensor Networks , 2002, Int. J. High Perform. Comput. Appl..

[32]  B. Otis,et al.  PicoRadios for wireless sensor networks: the next challenge in ultra-low power design , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[33]  Qun Li,et al.  Three power-aware routing algorithms for sensor networks , 2003, Wirel. Commun. Mob. Comput..

[34]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[35]  Donald Kossmann,et al.  The state of the art in distributed query processing , 2000, CSUR.

[36]  David E. Culler,et al.  A transmission control scheme for media access in sensor networks , 2001, MobiCom '01.

[37]  David J. DeWitt,et al.  Efficient mid-query re-optimization of sub-optimal query execution plans , 1998, SIGMOD '98.

[38]  Randy H. Katz,et al.  An architecture for building self-configurable systems , 2000, 2000 First Annual Workshop on Mobile and Ad Hoc Networking and Computing. MobiHOC (Cat. No.00EX444).

[39]  T. Dawson Fog in the California redwood forest: ecosystem inputs and use by plants , 1998, Oecologia.

[40]  Sharma Chakravarthy,et al.  Composite Events for Active Databases: Semantics, Contexts and Detection , 1994, VLDB.

[41]  Zachary G. Ives,et al.  Efficient query processing for data integration , 2002 .

[42]  David E. Culler,et al.  The nesC language: A holistic approach to networked embedded systems , 2003, PLDI.

[43]  Michael Beigl,et al.  Smart-Its: An Embedded Platform for Smart Objects , 2003 .

[44]  Joseph Y. Halpern,et al.  Gossip-based ad hoc routing , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[45]  Steven McCanne,et al.  A reliable multicast framework for light-weight sessions and application level framing , 1995, SIGCOMM '95.

[46]  Deborah Estrin,et al.  Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor Networks , 2002 .

[47]  Dhananjay S. Phatak,et al.  Preemptive routing in Ad Hoc networks , 2001, MobiCom '01.

[48]  David E. Culler,et al.  Supporting aggregate queries over ad-hoc wireless sensor networks , 2002, Proceedings Fourth IEEE Workshop on Mobile Computing Systems and Applications.

[49]  Hector Garcia-Molina,et al.  Routing indices for peer-to-peer systems , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[50]  Deborah Estrin,et al.  Impact of network density on data aggregation in wireless sensor networks , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[51]  Johannes Gehrke,et al.  Query optimization in compressed database systems , 2001, SIGMOD '01.

[52]  Philippe Bonnet,et al.  Towards Sensor Database Systems , 2001, Mobile Data Management.

[53]  Kyuseok Shim,et al.  Approximate query processing using wavelets , 2001, The VLDB Journal.

[54]  Rajmohan Rajaraman,et al.  WaveScheduling: energy-efficient data dissemination for sensor networks , 2004, DMSN '04.

[55]  Brad Karp,et al.  Greedy Perimeter Stateless Routing for Wireless Networks , 2000 .

[56]  Yong Yao,et al.  The cougar approach to in-network query processing in sensor networks , 2002, SGMD.

[57]  Per-Åke Larson,et al.  Data reduction by partial preaggregation , 2002, Proceedings 18th International Conference on Data Engineering.

[58]  Wen-Chi Hou,et al.  Statistical estimators for relational algebra expressions , 1988, PODS '88.

[59]  Yong Wang,et al.  Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet , 2002, ASPLOS X.

[60]  Wendi B. Heinzelman,et al.  Adaptive protocols for information dissemination in wireless sensor networks , 1999, MobiCom.

[61]  Wei Hong,et al.  The design of an acquisitional query processor for sensor networks , 2003, SIGMOD '03.

[62]  A. Prasad Sistla,et al.  DOMINO: databases fOr MovINg Objects tracking , 1999, SIGMOD '99.

[63]  Akbar M. Sayeed,et al.  Detection, Classification and Tracking of Targets in Distributed Sensor Networks , 2002 .

[64]  Divesh Srivastava,et al.  On computing correlated aggregates over continual data streams , 2001, SIGMOD '01.

[65]  Jenna Burrell,et al.  From ethnography to design in a vineyard , 2003, DUX '03.

[66]  David J. DeWitt,et al.  NiagaraCQ: a scalable continuous query system for Internet databases , 2000, SIGMOD 2000.

[67]  Hari Balakrishnan,et al.  The design and implementation of an intentional naming system , 1999, SOSP.

[68]  S. Jackson,et al.  Sensor Web for in situ exploration of gaseous biosignatures , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[69]  Hari Balakrishnan,et al.  6th ACM/IEEE International Conference on on Mobile Computing and Networking (ACM MOBICOM ’00) The Cricket Location-Support System , 2022 .

[70]  Deborah Estrin,et al.  Directed diffusion: a scalable and robust communication paradigm for sensor networks , 2000, MobiCom '00.

[71]  Rafael Alonso,et al.  Database system issues in nomadic computing , 1993, SIGMOD Conference.

[72]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[73]  Michael Stonebraker,et al.  Monitoring Streams - A New Class of Data Management Applications , 2002, VLDB.

[74]  Laurent Amsaleg,et al.  Cost-based query scrambling for initial delays , 1998, SIGMOD '98.

[75]  Alon Y. Halevy,et al.  An adaptive query execution system for data integration , 1999, SIGMOD '99.

[76]  Jeffrey F. Naughton,et al.  Adaptive parallel aggregation algorithms , 1995, SIGMOD '95.

[77]  David E. Culler,et al.  System architecture for wireless sensor networks , 2003 .

[78]  Krithi Ramamritham,et al.  Materialized view selection and maintenance using multi-query optimization , 2000, SIGMOD '01.

[79]  Carlo Zaniolo,et al.  Optimization of Nonrecursive Queries , 1986, VLDB.

[80]  Raghu Ramakrishnan,et al.  Database Management Systems , 1976 .

[81]  Robert Szewczyk,et al.  System architecture directions for networked sensors , 2000, ASPLOS IX.

[82]  Patrick Valduriez,et al.  FAD, a Powerful and Simple Database Language , 1987, VLDB.

[83]  Deborah Estrin,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Fine-grained Network Time Synchronization Using Reference Broadcasts , 2022 .

[84]  Nancy A. Lynch,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[85]  Clyde L. Monma,et al.  Sequencing with Series-Parallel Precedence Constraints , 1979, Math. Oper. Res..

[86]  Jack L. Stone Photovoltaics: Unlimited Electrical Energy from the Sun , 1993 .

[87]  Minos N. Garofalakis,et al.  Approximate Query Processing: Taming the TeraBytes , 2001, VLDB.

[88]  Joseph M. Hellerstein,et al.  Online dynamic reordering , 2000, The VLDB Journal.

[89]  Joseph Polastre,et al.  Design and implementation ofwireless sensor networks for habitat monitoring , 2003 .

[90]  Joseph M. Hellerstein,et al.  Optimization techniques for queries with expensive methods , 1998, TODS.