Output Feedback Stabilization of Uncertain Rectangular Descriptor Fractional Order Systems With $0< \alpha< 1$

In this paper, the issue of stabilization for uncertain rectangular descriptor fractional order systems (FOS) with $0< \alpha < 1$ is considered by designing dynamic compensators. Firstly, the uncertain rectangular descriptor FOS is reconstructed into an augmented uncertain square descriptor FOS. Due to introducing the augmented plant, dynamic compensator can equivalently be transformed into static output feedback. Secondly, two methods for the static output feedback controller design are provided. All results are expressed as a series of linear matrix inequalities (LMIs). Finally, three practical numerical examples are given to verify the effectiveness of the results proposed in this paper.

[1]  L. El Ghaoui,et al.  Synthesis of fixed-structure controllers via numerical optimization , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[2]  Yong Wang,et al.  The output feedback control synthesis for a class of singular fractional order systems. , 2017, ISA transactions.

[3]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .

[4]  R. Skelton,et al.  Parametrization of all stabilizing controllers via quadratic Lyapunov functions , 1995 .

[5]  Y. Chen,et al.  D-Stability Based LMI Criteria of Stability and Stabilization for Fractional Order Systems , 2015 .

[6]  Mohammed Chadli,et al.  New admissibility conditions for singular linear continuous-time fractional-order systems , 2017, J. Frankl. Inst..

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[9]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[10]  Guoshan Zhang Regularizability, controllability and observability of rectangular descriptor systems by dynamic compensation , 2006, 2006 American Control Conference.

[11]  Salim Ibrir,et al.  New sufficient conditions for observer-based control of fractional-order uncertain systems , 2015, Autom..

[12]  Tianmin Huang,et al.  Static output feedback control for positive linear continuous‐time systems , 2013 .

[13]  Ming Hou,et al.  A test for behavioral equivalence , 2000, IEEE Trans. Autom. Control..

[14]  James Lam,et al.  Stability and Performance Analysis for Positive Fractional-Order Systems With Time-Varying Delays , 2016, IEEE Transactions on Automatic Control.

[15]  Qing-Guo Wang,et al.  Stabilization for Singular Fractional-Order Systems via Static Output Feedback , 2018, IEEE Access.

[16]  Salim Ibrir,et al.  Sufficient conditions for domain stabilisability of uncertain fractional-order systems under static-output feedbacks , 2017 .

[17]  Xuefeng Zhang Improvements and comments on "New admissibility conditions for singular linear continuous-time fractional-order systems" , 2018, 2018 Chinese Control And Decision Conference (CCDC).

[18]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[19]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[20]  Bing Chen,et al.  Stabilization for a class of rectangular descriptor systems via time delayed dynamic compensator , 2019, J. Frankl. Inst..

[21]  Jian Chen,et al.  Fuzzy normalization and stabilization for a class of nonlinear rectangular descriptor systems , 2017, Neurocomputing.

[22]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[23]  Y. Chen,et al.  Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: The 0 , 2017, ISA transactions.

[24]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[25]  Xuefeng Zhang,et al.  Stabilization of rectangular descriptor fractional order systems , 2019, 2019 Chinese Control Conference (CCC).

[26]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[27]  Dimitri Peaucelle,et al.  From static output feedback to structured robust static output feedback: A survey , 2016, Annu. Rev. Control..

[28]  Mathieu Moze,et al.  LMI stability conditions for fractional order systems , 2010, Comput. Math. Appl..

[29]  Ming Hou,et al.  Controllability and elimination of impulsive modes in descriptor systems , 2004, IEEE Transactions on Automatic Control.

[30]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[31]  Yong-Hong Lan,et al.  Observer-based robust control of a (1⩽ a ≪ 2) fractional-order uncertain systems: a linear matrix inequality approach , 2012 .

[32]  João Yoshiyuki Ishihara,et al.  Impulse controllability and observability of rectangular descriptor systems , 2001, IEEE Trans. Autom. Control..

[33]  Yong Zhou,et al.  Non-fragile observer-based robust control for a class of fractional-order nonlinear systems , 2013, Syst. Control. Lett..

[34]  Xuefeng Zhang,et al.  Observer-based robust control of ( 0 < α < 1 ) fractional-order linear uncertain control systems , 2016 .

[35]  Qing-Guo Wang,et al.  Static output feedback stabilization for fractional-order systems in T-S fuzzy models , 2016, Neurocomputing.

[36]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[37]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .