The Asymptotics of Ranking Algorithms

We consider the predictive problem of supervised ranking, where the task is to rank sets of candidate items returned in response to queries. Although there exist statistical procedures that come with guarantees of consistency in this setting, these procedures require that individuals provide a complete ranking of all items, which is rarely feasible in practice. Instead, individuals routinely provide partial preference information, such as pairwise comparisons of items, and more practical approaches to ranking have aimed at modeling this partial preference data directly. As we show, however, such an approach raises serious theoretical challenges. Indeed, we demonstrate that many commonly used surrogate losses for pairwise comparison data do not yield consistency; surprisingly, we show inconsistency even in low-noise settings. With these negative results as motivation, we present a new approach to supervised ranking based on aggregation of partial preferences, and we develop $U$-statistic-based empirical risk minimization procedures. We present an asymptotic analysis of these new procedures, showing that they yield consistency results that parallel those available for classification. We complement our theoretical results with an experiment studying the new procedures in a large-scale web-ranking task.

[1]  Amnon Shashua,et al.  Ranking with Large Margin Principle: Two Approaches , 2002, NIPS.

[2]  Pradeep Ravikumar,et al.  On NDCG Consistency of Listwise Ranking Methods , 2011, AISTATS.

[3]  F. Mosteller Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations , 1951 .

[4]  Patrick Gallinari,et al.  Learning Scoring Functions with Order-Preserving Losses and Standardized Supervision , 2011, ICML.

[5]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[6]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[7]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[8]  Claudio Gentile,et al.  On the generalization ability of on-line learning algorithms , 2001, IEEE Transactions on Information Theory.

[9]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[10]  Tong Zhang,et al.  Statistical Analysis of Some Multi-Category Large Margin Classification Methods , 2004, J. Mach. Learn. Res..

[11]  Yoram Singer,et al.  Log-Linear Models for Label Ranking , 2003, NIPS.

[12]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[13]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[14]  Thomas L. Saaty,et al.  Decision-making with the AHP: Why is the principal eigenvector necessary , 2003, Eur. J. Oper. Res..

[15]  Gordon D. A. Brown,et al.  Absolute identification by relative judgment. , 2005, Psychological review.

[16]  Thore Graepel,et al.  Large Margin Rank Boundaries for Ordinal Regression , 2000 .

[17]  Ambuj Tewari,et al.  On the Consistency of Multiclass Classification Methods , 2007, J. Mach. Learn. Res..

[18]  P. Moran On the method of paired comparisons. , 1947, Biometrika.

[19]  Tong Zhang Statistical behavior and consistency of classification methods based on convex risk minimization , 2003 .

[20]  G. Lugosi,et al.  Ranking and empirical minimization of U-statistics , 2006, math/0603123.

[21]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[22]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[23]  Michael I. Jordan,et al.  On the Consistency of Ranking Algorithms , 2010, ICML.

[24]  Nick Craswell,et al.  An experimental comparison of click position-bias models , 2008, WSDM '08.

[25]  H. A. David,et al.  The method of paired comparisons , 1966 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[28]  H. Gulliksen A least squares solution for paired comparisons with incomplete data , 1956 .

[29]  Olivier Chapelle,et al.  Expected reciprocal rank for graded relevance , 2009, CIKM.

[30]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[31]  Yoram Singer,et al.  Efficient Online and Batch Learning Using Forward Backward Splitting , 2009, J. Mach. Learn. Res..

[32]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[33]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[34]  R. Nosofsky,et al.  Seven plus or minus two: a commentary on capacity limitations. , 1994, Psychological review.

[35]  L. Thurstone A law of comparative judgment. , 1994 .

[36]  T. Saaty Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process , 2008 .

[37]  Michael I. Jordan,et al.  Convexity, Classification, and Risk Bounds , 2006 .

[38]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[39]  Tong Zhang,et al.  Statistical Analysis of Bayes Optimal Subset Ranking , 2008, IEEE Transactions on Information Theory.

[40]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[41]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[42]  Devavrat Shah,et al.  Ranking: Compare, don't score , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[43]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[44]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[45]  Ambuj Tewari,et al.  Composite objective mirror descent , 2010, COLT 2010.

[46]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[47]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[48]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[49]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[50]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[51]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[52]  P.-C.-F. Daunou,et al.  Mémoire sur les élections au scrutin , 1803 .

[53]  Ralf Herbrich,et al.  Large margin rank boundaries for ordinal regression , 2000 .

[54]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[55]  F. Mosteller Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations , 1951 .

[56]  Ingo Steinwart How to Compare Different Loss Functions and Their Risks , 2007 .

[57]  Maya R. Gupta,et al.  How to Analyze Paired Comparison Data , 2011 .