Frequency estimation for single-carrier and OFDM signals in communication and radar systems

Eine der klassischen Problemstellungen in der Signalverarbeitung ist die Schaetzung der Frequenz eines Signals, das von weissem Rauschen additiv ueberlagert ist. Diese bedeutende Aufgabe stellt sich in vielen verschiedenen Anwendungsbereichen wie der Kommunikationstechnik, beim Doppler-Radar, beim Radar mit synthetischer Apertur (SAR), beim Array Processing, bei Radio-Frequency-IDentification (RFID), bei Resonanz-Sensoren usw. Die Anforderungen bezueglich der Leistungsfaehigkeit des Frequenzschaetzers haengen von der Anwendung ab. Die Leistungsfaehigkeit ist dabei oft unter Beruecksichtigung der folgenden 4 Punkte definiert: i) Genauigkeit, Richtigkeit der Schaetzung, ii) Arbeitsbereich (estimation range), iii) Grenzwerte der Schaetzung (im Vergleich zu einer theoretisch moeglichen Schwelle) und iv) Komplexitaet der Implementierung. Diese Anforderungen koennen nicht unabhaengig voneinander betrachtet werden und stehen sich teilweise gegenueber. Beispielsweise erfordert die Erzielung von Ergebnissen nahe an der theoretisch moeglichen Schwelle eine hohe Komplexitaet. Ebenso kann ein Schaetz-ergebnis von hoher Genauigkeit oftmals nur fuer einen stark eingeschraenkten Arbeitsbereich erzielt werden. Die Frequenzschaetzung ist im Falle von durch Fading hervorgerufenem multiplikativem Rauschen noch herausfordernder. Es handelt sich dann um den allgemeinen Fall der Frequenzschaetzung. Bisher hat man bereits viel Arbeit in die Ableitung eines Schaetzers fur diesen allgemeinen Fall investiert. Ein Schaetzer, der optimal bezueglich aller oben genannten Kriterien ist, duerfte allerdings nur schwer zu finden sein. In dieser Dissertation wird mit Blick auf Kommunikationstechnik und Radaranwendungen ein verallgemeinerter, in geschlossener Form vorliegender, Frequenzschaetzer eingefuehrt, der alle genannten Kriterien der Leistungs-faehigkeit beruecksichtigt. Die Herleitung des Schaetzers beruht auf dem Prinzip der kleinsten Fehlerquadrate fuer den nichtlinearen Fall in Verbindung mit der Abelschen partiellen Summation. Zudem werden verschiedene modifizierte Frequenzschaetzer vorgestellt, die sich fuer Faelle in denen kein Fading oder nur sehr geringes Fading auftritt, eignen. Estimating the frequency of a signal embedded in additive white Gaussian noise is one of the classical problems in signal processing. It is of fundamental importance in various applications such as in communications, Doppler radar, synthetic aperture radar (SAR), array processing, radio frequency identification (RFID), resonance sensor, etc. The requirement on the performance of the frequency estimator varies with the application. The performance is often defined using four indexes: i). estimation accuracy, ii). estimation range, iii). estimation threshold, and iv). implementation complexity. These indexes may be in contrast with each other. For example, achieving a low threshold usually implies a high complexity. Likewise, good estimation accuracy is often obtained at the price of a narrow estimation range. The estimation becomes even more difficult in the presence of fading-induced multiplicative noise which is considered to be the general case of the frequency estimation problem. There have been a lot of efforts in deriving the estimator for the general case, however, a generalized estimator that fulfills all indexes can be hardly obtained. Focusing on communications and radar applications, this thesis proposes a new generalized closed-form frequency estimator that compromises all performance indexes. The derivation of the proposed estimator relies on the nonlinear least-squares principle in conjunction with the well known summation-by-parts formula. In addition to this, several modified frequency estimators suitable for non-fading or very slow fading scenarios, are also introduced in this thesis.

[1]  Steven Kay,et al.  A Fast and Accurate Single Frequency Estimator , 2022 .

[2]  Otmar Loffeld,et al.  Phase Unwrapping for SAR Interferometry—A Data Fusion Approach by Kalman Filtering , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Petre Stoica,et al.  On frequency offset estimation for flat-fading channels , 2001, IEEE Communications Letters.

[4]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[5]  F. Li,et al.  Ambiguities in Spacebornene Synthetic Aperture Radar Systems , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[6]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[7]  Ramakrishnan Janaswamy,et al.  Radiowave Propagation and Smart Antennas for Wireless Communications , 2000 .

[8]  J. L. Holsinger,et al.  DIGITAL COMMUNICATION OVER FIXED TIMECONTINUOUS CHANNELS WITH MEMORY, WITH SPECIAL APPLICATION TO TELEPHONE CHANNELS, , 1964 .

[9]  A. Czylwik Synchronization for systems with antenna diversity , 1999, Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324).

[10]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[11]  Harish Viswanathan,et al.  A frequency offset estimation technique for frequency-selective fading channels , 2001, IEEE Communications Letters.

[12]  S. Knedlik,et al.  Nonlinear Least-Squares Frequency Offset Estimator and Its Simplified Versions for Flat-Fading Channels , 2006, 2006 International Symposium on Communications and Information Technologies.

[13]  S. Weinstein,et al.  Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform , 1971 .

[14]  Hui Liu,et al.  Low-complexity nonlinear least squares carrier offset estimator for OFDM: identifiability, diversity and performance , 2004, IEEE Transactions on Signal Processing.

[15]  Ananthram Swami,et al.  Parameter estimation for random amplitude chirp signals , 1999, IEEE Trans. Signal Process..

[16]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[17]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[18]  M. P. Fitz Planar filtered techniques for burst mode carrier synchronization , 1991, IEEE Global Telecommunications Conference GLOBECOM '91: Countdown to the New Millennium. Conference Record.

[19]  Steven A. Tretter,et al.  Estimating the frequency of a noisy sinusoid by linear regression , 1985, IEEE Trans. Inf. Theory.

[20]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[21]  S. Abeysekera Performance of pulse-pair method of Doppler estimation , 1998 .

[22]  Otmar Loffeld,et al.  Demodulation of noisy phase or frequency modulated signals with Kalman filters , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[23]  Donald C. Cox,et al.  Robust frequency and timing synchronization for OFDM , 1997, IEEE Trans. Commun..

[24]  Otmar Loffeld,et al.  A New Closed-Form Frequency Estimator in the Presence of Fading-Induced Multiplicative Noise , 2008, VTC Spring 2008 - IEEE Vehicular Technology Conference.

[25]  Marc Moeneclaey,et al.  BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise , 1995, IEEE Trans. Commun..

[26]  Yong Hoon Lee,et al.  Data-aided frequency estimation for PSK signaling in frequency-selective fading , 2001, IEEE J. Sel. Areas Commun..

[27]  Kareem E. Baddour,et al.  Autoregressive models for fading channel simulation , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[28]  Umberto Mengali,et al.  Further results in carrier frequency estimation for transmissions over flat fading channels , 1998, IEEE Communications Letters.

[29]  Manfred Wieser,et al.  Navigation: Principles of Positioning and Guidance , 2003 .

[30]  Umberto Mengali,et al.  An improved frequency offset estimator for OFDM applications , 1999, IEEE Communications Letters.

[31]  R. Clarke,et al.  3-D mobile radio channel statistics , 1997 .

[32]  Marco Luise,et al.  Carrier frequency recovery in all-digital modems for burst-mode transmissions , 1995, IEEE Trans. Commun..

[33]  Petre Stoica,et al.  Decoupled estimation of DOA and angular spread for spatially distributed sources , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[34]  T. Kailath,et al.  Direction of arrival estimation by eigenstructure methods with imperfect spatial coherence of wave fronts , 1988 .

[35]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[36]  Otmar Loffeld,et al.  An Improved Frequency Offset Estimator for SIMO-OFDM with Maximum Estimation Range , 2008, VTC Spring 2008 - IEEE Vehicular Technology Conference.

[37]  Ananthram Swami,et al.  Optimized null-subcarrier selection for CFO estimation in OFDM over frequency-selective fading channels , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[38]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[39]  T.C.W. Schenk,et al.  Frequency synchronization for MIMO OFDM wireless LAN systems , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[40]  Paul H. Moose,et al.  A technique for orthogonal frequency division multiplexing frequency offset correction , 1994, IEEE Trans. Commun..

[41]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[42]  Otmar Loffeld Doppler Centroid Estimation With Kalman Filters , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[43]  Petre Stoica,et al.  Sinusoidal signals with random amplitude: least-squares estimators and their statistical analysis , 1995, IEEE Trans. Signal Process..

[44]  Frédéric Galtier,et al.  Frequency estimation of laser signals with time-varying amplitude from phase measurements , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[45]  Tim C. W. Schenk,et al.  Implementation of a MIMO OFDM-based wireless LAN system , 2004, IEEE Transactions on Signal Processing.

[46]  Michael Jin Optimal Doppler Centroid Estimation for SAR Data from a Quasi-Homogeneous Source , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[48]  Michael P. Fitz,et al.  Further results in the fast estimation of a single frequency , 1994, IEEE Trans. Commun..

[49]  Yuriy V. Zakharov,et al.  Frequency estimation in slowly fading multipath channels , 2002, IEEE Trans. Commun..

[50]  Saman S. Abeysekera,et al.  Performance of correlation-based frequency estimation methods in the presence of multiplicative noise , 2006, IEEE Transactions on Vehicular Technology.

[51]  Frédéric Galtier,et al.  Estimating particles velocity from laser measurements: maximum likelihood and Cramer-Rao bounds , 1996, IEEE Trans. Signal Process..

[52]  Umberto Mengali,et al.  Data-aided frequency estimation for burst digital transmission , 1997, IEEE Trans. Commun..

[53]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[54]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[55]  Petre Stoica,et al.  Approximate maximum likelihood estimators for array processing in multiplicative noise environments , 2000, IEEE Trans. Signal Process..

[56]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[57]  R. Chang Synthesis of band-limited orthogonal signals for multichannel data transmission , 1966 .

[58]  I. Vaughan L. Clarkson,et al.  Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator , 1994, IEEE Trans. Signal Process..

[59]  Ananthram Swami,et al.  Estimation of directions of arrival of multiple scattered sources , 2001, IEEE Trans. Signal Process..

[60]  Otmar Loffeld,et al.  A Method to Extend the Estimation Range of the Existing Time-Domain Doppler Centroid Estimators , 2008, IEEE Geoscience and Remote Sensing Letters.

[61]  Hyoung-Kyu Song,et al.  Frequency-offset synchronization and channel estimation for OFDM-based transmission , 2000, IEEE Communications Letters.

[62]  Marco Luise,et al.  Cramer-Rao bounds in the parametric estimation of fading radiotransmission channels , 1998, IEEE Trans. Commun..

[63]  Otmar Loffeld,et al.  Constrained-trajectory based GPS/INS integration for reliable position and attitude determination , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[64]  K. D. Tocher,et al.  Basic theorems in matrix theory , 1960 .

[65]  Leonard J. Cimini,et al.  Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing , 1985, IEEE Trans. Commun..

[66]  Otmar Loffeld,et al.  Estimating Time Varying Doppler Centroids With Kalman Filters , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[67]  Tariq S. Durrani,et al.  Frequency estimation in the presence of Doppler spread: performance analysis , 2001, IEEE Trans. Signal Process..

[68]  Fuk K. Li,et al.  Doppler Parameter Estimation for Spaceborne Synthetic-Aperture Radars , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[69]  Eirik Rosnes,et al.  Frequency estimation of a single complex sinusoid using a generalized Kay estimator , 2006, IEEE Transactions on Communications.

[70]  R. Gallager Information Theory and Reliable Communication , 1968 .

[71]  Umberto Mengali,et al.  Carrier-frequency estimation for transmissions over selective channels , 2000, IEEE Trans. Commun..

[72]  K. Kristoffersen Time-domain estimation of the center frequency and spread of Doppler spectra in diagnostic ultrasound , 1988, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[73]  J. Holsinger Digital communication over fixed time-continuous channels with memory-with special application to te , 1964 .

[74]  Michael P. Fitz,et al.  Frequency offset compensation of pilot symbol assisted modulation in frequency flat fading , 1997, IEEE Trans. Commun..