Modeling aircraft pushback trajectories for safe operations

Pushback operations are safety critical as historic incident and accident data show. The consequences are severe injuries of the ground personnel and expensive aircraft damages. As such, pushback process optimization by means of precise tug/aircraft trajectory prediction is considered as valuable risk mitigation strategy. We present a mathematical model to predict these pushback trajectories under various geometric constellations which is a complex solver activity. Our proposed model relies on a kinematic approach to generate the pushback trajectory as a function of aircraft wheelbase and geometric angles for curved segments. The conclusive concept validation is based on commonly provided ICAO standard planning data and shows promising results which will be subject of further field validation tests.