Parameter estimation for hidden Markov chains
暂无分享,去创建一个
[1] Ronald J. Jaszczak,et al. Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data , 1997, IEEE Transactions on Medical Imaging.
[2] A Generalized Maximum Pseudo-Likelihood Estimator for Noisy Markov Fields , 1995 .
[3] T. Rydén. Consistent and Asymptotically Normal Parameter Estimates for Hidden Markov Models , 1994 .
[4] A. Gelfand,et al. Maximum-likelihood estimation for constrained- or missing-data models , 1993 .
[5] C. Robert,et al. Bayesian estimation of hidden Markov chains: a stochastic implementation , 1993 .
[6] Jun Zhang,et al. The mean field theory in EM procedures for blind Markov random field image restoration , 1993, IEEE Trans. Image Process..
[7] C. Geyer,et al. Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .
[8] M. Puterman,et al. Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. , 1992, Biometrics.
[9] W. Qian,et al. Estimation of parameters in hidden Markov models , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[10] J. W. Modestino,et al. the Mean Field Theory in EM Procedures for Markov Random Fields , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.
[11] Federico Girosi,et al. Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[12] Biing-Hwang Juang,et al. Hidden Markov Models for Speech Recognition , 1991 .
[13] W. Qian,et al. Parameter estimation for hidden Gibbs chains , 1990 .
[14] Federico Girosi,et al. Parallel and deterministic algorithms from MRFs: surface reconstruction and integration , 1990, ECCV.
[15] Arnoldo Frigessi,et al. Parameter estimation for two-dimensional ising fields corrupted by noise , 1990 .
[16] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[17] W. Qian,et al. On the use of Gibbs Markov chain models in the analysis of images based on second-order pairwise interactive distributions , 1989 .
[18] Carsten Peterson,et al. A Mean Field Theory Learning Algorithm for Neural Networks , 1987, Complex Syst..
[19] J. Besag. On the Statistical Analysis of Dirty Pictures , 1986 .
[20] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[21] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[22] J. Besag. Statistical Analysis of Non-Lattice Data , 1975 .
[23] L. Baum,et al. A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .