Parameter estimation for hidden Markov chains

[1]  Ronald J. Jaszczak,et al.  Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data , 1997, IEEE Transactions on Medical Imaging.

[2]  A Generalized Maximum Pseudo-Likelihood Estimator for Noisy Markov Fields , 1995 .

[3]  T. Rydén Consistent and Asymptotically Normal Parameter Estimates for Hidden Markov Models , 1994 .

[4]  A. Gelfand,et al.  Maximum-likelihood estimation for constrained- or missing-data models , 1993 .

[5]  C. Robert,et al.  Bayesian estimation of hidden Markov chains: a stochastic implementation , 1993 .

[6]  Jun Zhang,et al.  The mean field theory in EM procedures for blind Markov random field image restoration , 1993, IEEE Trans. Image Process..

[7]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[8]  M. Puterman,et al.  Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. , 1992, Biometrics.

[9]  W. Qian,et al.  Estimation of parameters in hidden Markov models , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[10]  J. W. Modestino,et al.  the Mean Field Theory in EM Procedures for Markov Random Fields , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[11]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[13]  W. Qian,et al.  Parameter estimation for hidden Gibbs chains , 1990 .

[14]  Federico Girosi,et al.  Parallel and deterministic algorithms from MRFs: surface reconstruction and integration , 1990, ECCV.

[15]  Arnoldo Frigessi,et al.  Parameter estimation for two-dimensional ising fields corrupted by noise , 1990 .

[16]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[17]  W. Qian,et al.  On the use of Gibbs Markov chain models in the analysis of images based on second-order pairwise interactive distributions , 1989 .

[18]  Carsten Peterson,et al.  A Mean Field Theory Learning Algorithm for Neural Networks , 1987, Complex Syst..

[19]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[20]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[21]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[23]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .