Probability, Nondeterminism and Concurrency: Two Denotational Models for Probabilistic Computation

Nondeterminism is modelled in domain theory by the notion of a powerdomain, while probability is modelled by that of the probabilistic powerdomain. Some problems arise when we want to combine them in order to model computation in which both nondeterminism and probability are present. In particular there is no categorical distributive law between them. We introduce the powerdomain of indexed valuations which modifies the usual probabilistic powerdomain to take more detailed account of where probabilistic choices are made. We show the existence of a distributive law between the powerdomain of indexed valuations and the nondeterministic powerdomain. By means of an equational theory we give an alternative characterisation of indexed valuations and the distributive law. We study the relation between valuations and indexed valuations. Finally we use indexed valuations to give a semantics to a programming language. This semantics reveals the computational intuition lying behind the mathematics. In the second part of the thesis we provide an operational reading of continuous valuations on certain domains (the distributive concrete domains of Kahn and Plotkin) through the model of probabilistic event structures. Event structures are a model for concurrent computation that account for causal relations between events. We propose a way of adding probabilities to confusion free event structures, defining the notion of probabilistic event structure. This leads to various ideas of a run for probabilistic event structures. We show a confluence theorem for such runs. Configurations of a confusion free event structure form a distributive concrete domain. We give a representation theorem which characterises completely the powerdomain of valuations of such concrete domains in terms of probabilistic event structures.

[1]  Grzegorz Rozenberg,et al.  Petri Nets: Basic Notions, Structure, Behaviour , 1986, Current Trends in Concurrency.

[2]  Gordon D. Plotkin,et al.  Notions of Computation Determine Monads , 2002, FoSSaCS.

[3]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[4]  Glynn Winskel,et al.  Domain theory for concurrency , 2003, Theor. Comput. Sci..

[5]  Jesper Buus Nielsen,et al.  On Protocol Security in the Cryptographic Model , 2003 .

[6]  Viggo Stoltenberg-hansen,et al.  In: Handbook of Logic in Computer Science , 1995 .

[7]  John Power,et al.  Combining computational effects: commutativity and sum , 2001 .

[8]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.

[9]  Glynn Winskel,et al.  Events in computation , 1980 .

[10]  Thomas A. Henzinger,et al.  Compositional Methods for Probabilistic Systems , 2001, CONCUR.

[11]  Joost-Pieter Katoen,et al.  Quantitative and Qualitative Extensions of Event Structures , 1996 .

[12]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[13]  Mihir Bellare,et al.  Lecture Notes on Cryptography , 2001 .

[14]  Claus Brabrand,et al.  Domain Specific Languages for Interactive Web Services , 2003 .

[15]  Christopher Strachey,et al.  Toward a mathematical semantics for computer languages , 1971 .

[16]  Frank D. Valencia,et al.  Temporal Concurrent Constraint Programming , 2001, CP.

[17]  Radha Jagadeesan,et al.  Metrics for Labeled Markov Systems , 1999, CONCUR.

[18]  Jan J. M. M. Rutten,et al.  Initial Algebra and Final Coalgebra Semantics for Concurrency , 1993, REX School/Symposium.

[19]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[20]  Glynn Winskel,et al.  Events in security protocols , 2001, CCS '01.

[21]  R. Lathe Phd by thesis , 1988, Nature.

[22]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[23]  Glynn Winskel,et al.  A Note on Powerdomains and Modalitiy , 1983, FCT.

[24]  C.-H. Luke Ong,et al.  On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..

[25]  Glynn Winskel,et al.  Event Structure Semantics for CCS and Related Languages , 1982, ICALP.

[26]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[27]  Rasmus K. Ursem,et al.  Models for Evolutionary Algorithms and Their Applications in System Identification and Control Optimization , 2003 .

[28]  Regina Tix,et al.  Continuous D-cones: convexity and powerdomain constructions , 1999 .

[29]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains, Part I , 1981, Theor. Comput. Sci..

[30]  Hagen Völzer Randomized Non-sequential Processes , 2001, CONCUR.

[31]  Wang Yi,et al.  Probabilistic Extensions of Process Algebras , 2001, Handbook of Process Algebra.

[32]  Daniele Varacca,et al.  The powerdomain of indexed valuations , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[33]  Karen Seidel,et al.  Probabilistic Communicating Processes , 1992, Theor. Comput. Sci..

[34]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[35]  Abbas Edalat Domain Theory and Integration , 1995, Theor. Comput. Sci..

[36]  G. Winskel The formal semantics of programming languages , 1993 .

[37]  Gordon D. Plotkin,et al.  Concrete Domains , 1993, Theor. Comput. Sci..

[38]  Gilles Kahn,et al.  Coroutines and Networks of Parallel Processes , 1977, IFIP Congress.

[39]  Hans A. Hansson Time and probability in formal design of distributed systems , 1991, DoCS.

[40]  M. Smyth Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[41]  Bengt Jonsson,et al.  A calculus for communicating systems with time and probabilities , 1990, [1990] Proceedings 11th Real-Time Systems Symposium.

[42]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[43]  Wolfgang Reisig,et al.  Petri Nets: Applications and Relationships to Other Models of Concurrency , 1986, Lecture Notes in Computer Science.

[44]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[45]  Annabelle McIver,et al.  Refinement-oriented probability for CSP , 1996, Formal Aspects of Computing.

[46]  Mads J. Jurik,et al.  Extensions to the Paillier Cryptosystem with Applications to Cryptological Protocols , 2003 .

[47]  Serge Fehr,et al.  Secure Multi-Player Protocols: Fundamentals, Generality, and Efficiency , 2003 .

[48]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[49]  Mauricio. Alvarez Manilla Measure theoretic results for continuous valuations on partially ordered spaces , 2001 .

[50]  Achim Jung,et al.  The troublesome probabilistic powerdomain , 1997, COMPROX.

[51]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[52]  Robin Milner,et al.  Fully Abstract Models of Typed lambda-Calculi , 1977, Theor. Comput. Sci..

[53]  Gilles Kahn,et al.  The Semantics of a Simple Language for Parallel Programming , 1974, IFIP Congress.

[54]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[55]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[56]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[57]  Catuscia PalamidessiDept Probabilistic Asynchronous -calculus ? , 2000 .

[58]  N. Saheb-Djahromi,et al.  CPO'S of Measures for Nondeterminism , 1980, Theor. Comput. Sci..

[59]  Bernhard Steffen,et al.  Reactive, Generative and Stratified Models of Probabilistic Processes , 1995, Inf. Comput..

[60]  Marta Z. Kwiatkowska,et al.  PRISM: Probabilistic Symbolic Model Checker , 2002, Computer Performance Evaluation / TOOLS.

[61]  Glynn Winskel,et al.  Calculus for categories , 2002, FICS.

[62]  Gavin Lowe,et al.  Probabilities and priorities in timed CSP , 1993 .

[63]  Abbas Edalat,et al.  An Extension Result for Continuous Valuations , 2000, COMPROX.

[64]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[65]  Claire Jones,et al.  Probabilistic non-determinism , 1990 .

[66]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[67]  Anita Tabacco,et al.  Analisi matematica I , 2005 .

[68]  Amir Pnueli,et al.  Probabilistic Verification , 1993, Information and Computation.

[69]  Erik P. de Vink,et al.  A hierarchy of probabilistic system types , 2003, CMCS.

[70]  Erik P. de Vink,et al.  Mixing Up Nondeterminism and Probability: a preliminary report , 1998, PROBMIV.

[71]  Regina Tix Convex power constructions for continuous d-cones , 2000, Electron. Notes Theor. Comput. Sci..

[72]  Abbas Edalat,et al.  A logical characterization of bisimulation for labeled Markov processes , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[73]  Roberto Segala,et al.  Axiomatizations for Probabilistic Bisimulation , 2001, ICALP.

[74]  Christel Baier,et al.  Domain equations for probabilistic processes , 2000, Mathematical Structures in Computer Science.

[75]  C.-H. Luke Ong Correspondence between Operational and Denotational Semantics , 1995, LICS 1995.

[76]  Paulo Oliva Proof Mining in Subsystems of Analysis , 2003 .

[77]  Zohar Manna,et al.  Formal verification of probabilistic systems , 1997 .

[78]  Glynn Winskel,et al.  Event Structures , 1986, Advances in Petri Nets.

[79]  Abbas Edalat,et al.  Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..

[80]  Mogens Nielsen,et al.  Models for Concurrency , 1992 .

[81]  Benjamin C. Pierce,et al.  Linearity and the pi-calculus , 1999, TOPL.