Chaotic motion in the resonant separatrix bands of a Mathieu-Duffing oscillator with a twin-well potential

The (M:1)-resonant bands in the left and right potential wells are skew-symmetric, and the (2M:1)-resonant bands of the large orbit motion are symmetric. The analytical conditions for the onset and destruction of a resonant band are developed through the incremental energy approach. The numerical predictions of such onset and destruction are also completed by the energy increment spectrum method. The sub-resonance interaction occurs for strong excitations, which needs to be further investigated. These results are applicable to the small- and large-orbit motions of post-buckled structure under a parametric excitation.

[1]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[2]  Edmund Taylor Whittaker,et al.  On the general solution of Mathieu's equation , 1913, Proceedings of the Edinburgh Mathematical Society.

[3]  Resonant Layers in Nonlinear Dynamics , 1998 .

[4]  C. Hsu On the Parametric Excitation of a Dynamic System Having Multiple Degrees of Freedom , 1963 .

[5]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[6]  J. M. Greene Two‐Dimensional Measure‐Preserving Mappings , 1968 .

[7]  Albert C. J. Luo,et al.  ANALYTICAL PREDICTIONS OF CHAOS IN A NON-LINEAR ROD , 1999 .

[8]  Albert C. J. Luo Resonant Layers in a Parametrically excited Pendulum , 2002, Int. J. Bifurc. Chaos.

[9]  Structure of the stochastic layer of a perturbed double-well potential system , 1985 .

[10]  C. Hsu,et al.  Further Results on Parametric Excitation of a Dynamic System , 1965 .

[11]  D. Escande,et al.  Renormalization method for the onset of stochasticity in a hamiltonian system , 1981 .

[12]  E. Mathieu,et al.  Cours de physique mathématique , 1873 .

[13]  A. Luo RESONANT-OVERLAP PHENOMENA IN STOCHASTIC LAYERS OF NON-LINEAR HAMILTONIAN SYSTEMS WITH PERIODICAL EXCITATIONS , 2001 .

[14]  A. Luo,et al.  Resonant-Separatrix Webs in Stochastic Layers of the Twin-Well Duffing Oscillator , 1999 .

[15]  Eugene Sevin,et al.  On the Parametric Excitation of Pendulum-Type Vibration Absorber , 1961 .

[16]  M. Mond,et al.  Stability Analysis Of The Non-Linear Mathieu Equation , 1993 .

[17]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[18]  Albert C. J. Luo,et al.  The resonance theory for stochastic layers in nonlinear dynamic systems , 2001 .

[19]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[20]  Feng Kang,et al.  Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study , 1991 .

[21]  D. Escande Stochasticity in classical Hamiltonian systems: Universal aspects , 1985 .

[22]  Randolph S. Zounes,et al.  Transition Curves for the Quasi-Periodic Mathieu Equation , 1998, SIAM J. Appl. Math..

[23]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[24]  W. K. Tso,et al.  Parametric Excitation of a Nonlinear System , 1965 .