Chaotic motion in the resonant separatrix bands of a Mathieu-Duffing oscillator with a twin-well potential
暂无分享,去创建一个
[1] M. Hénon,et al. The applicability of the third integral of motion: Some numerical experiments , 1964 .
[2] Edmund Taylor Whittaker,et al. On the general solution of Mathieu's equation , 1913, Proceedings of the Edinburgh Mathematical Society.
[3] Resonant Layers in Nonlinear Dynamics , 1998 .
[4] C. Hsu. On the Parametric Excitation of a Dynamic System Having Multiple Degrees of Freedom , 1963 .
[5] R. McLachlan,et al. The accuracy of symplectic integrators , 1992 .
[6] J. M. Greene. Two‐Dimensional Measure‐Preserving Mappings , 1968 .
[7] Albert C. J. Luo,et al. ANALYTICAL PREDICTIONS OF CHAOS IN A NON-LINEAR ROD , 1999 .
[8] Albert C. J. Luo. Resonant Layers in a Parametrically excited Pendulum , 2002, Int. J. Bifurc. Chaos.
[9] Structure of the stochastic layer of a perturbed double-well potential system , 1985 .
[10] C. Hsu,et al. Further Results on Parametric Excitation of a Dynamic System , 1965 .
[11] D. Escande,et al. Renormalization method for the onset of stochasticity in a hamiltonian system , 1981 .
[12] E. Mathieu,et al. Cours de physique mathématique , 1873 .
[13] A. Luo. RESONANT-OVERLAP PHENOMENA IN STOCHASTIC LAYERS OF NON-LINEAR HAMILTONIAN SYSTEMS WITH PERIODICAL EXCITATIONS , 2001 .
[14] A. Luo,et al. Resonant-Separatrix Webs in Stochastic Layers of the Twin-Well Duffing Oscillator , 1999 .
[15] Eugene Sevin,et al. On the Parametric Excitation of Pendulum-Type Vibration Absorber , 1961 .
[16] M. Mond,et al. Stability Analysis Of The Non-Linear Mathieu Equation , 1993 .
[17] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[18] Albert C. J. Luo,et al. The resonance theory for stochastic layers in nonlinear dynamic systems , 2001 .
[19] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[20] Feng Kang,et al. Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study , 1991 .
[21] D. Escande. Stochasticity in classical Hamiltonian systems: Universal aspects , 1985 .
[22] Randolph S. Zounes,et al. Transition Curves for the Quasi-Periodic Mathieu Equation , 1998, SIAM J. Appl. Math..
[23] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[24] W. K. Tso,et al. Parametric Excitation of a Nonlinear System , 1965 .