A cell-activation-time controlled SRAM for low-voltage operation in DVFS SoCs using dynamic stability analysis
暂无分享,去创建一个
[1] D. Plass,et al. A 5.6GHz 64kB Dual-Read Data Cache for the POWER6TM Processor , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.
[2] Koji Nii,et al. Worst-case analysis to obtain stable read/write DC margin of high density 6T-SRAM-array with local Vth variability , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..
[3] M. Yamaoka,et al. Operating-margin-improved SRAM with column-at-a-time body-bias control technique , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.
[4] H. Pilo,et al. An SRAM Design in 65-nm Technology Node Featuring Read and Write-Assist Circuits to Expand Operating Voltage , 2007, IEEE Journal of Solid-State Circuits.
[5] S. Burns,et al. An SRAM Design in 65nm and 45nm Technology Nodes Featuring Read and Write-Assist Circuits to Expand Operating Voltage , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..
[6] M. Yamaoka,et al. Low power SRAM menu for SOC application using Yin-Yang-feedback memory cell technology , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).
[7] S. Shimada,et al. Low-power embedded SRAM modules with expanded margins for writing , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..
[8] M. Khellah,et al. Wordline & Bitline Pulsing Schemes for Improving SRAM Cell Stability in Low-Vcc 65nm CMOS Designs , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..