Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire
暂无分享,去创建一个
[1] E. Süli,et al. A dual graph-norm refinement indicator for finite volume approximations of the Euler equations , 1998 .
[2] R. Verfürth. A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations , 1994 .
[3] Abdellatif Agouzal,et al. Un nouveau résultat d'estimation d'erreur pour les éléments finis mixtes rectangulaires avec intégration numérique. Application à l'analyse de schémas de type volumes finis , 1996 .
[4] Rüdiger Verfürth. A Posteriori Error Estimators and Adaptive Mesh-Refinement for a Mixed Finite Element Discretization of the Navier-Stokes Equations , 1990 .
[5] Ricardo G. Durán,et al. On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .
[6] Abdellatif Agouzal,et al. Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes , 1998, Numerische Mathematik.
[7] M. Ohlberger,et al. A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations , 2001, Numerische Mathematik.
[8] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[9] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[10] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[11] Barbara I. Wohlmuth,et al. A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements , 1999, Math. Comput..
[12] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[13] Ivo Babuška,et al. Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements , 1992 .
[14] Randolph E. Bank,et al. A posteriori error estimates for the Stokes equations: a comparison , 1990 .
[15] R. Verfürth. A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .
[16] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[17] J. Craggs. Applied Mathematical Sciences , 1973 .
[18] Ricardo G. Durán,et al. On the asymptotic exactness of Bank-Weiser's estimator , 1992 .
[19] Randolph E. Bank,et al. A posteriori error estimates for the Stokes problem , 1991 .
[20] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[21] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[22] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[23] Jacques Rappaz,et al. Error estimates and adaptive finite elements for nonlinear diffusion-convection problems , 1996 .
[24] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[25] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[26] Z. Mghazli,et al. An Adaptive Method for Characteristics-Finite Element Method for Solute Transport Equation in Unsaturated Porous Media , 2000 .