Reading out Fisher information from the zeros of the point spread function.

We show that, for optical systems whose point spread functions exhibit isolated zeros, the information one can gain about the separation between two incoherent point light sources does not scale quadratically with the separation (which is the distinctive dependence causing Rayleigh's curse) but only linearly. Moreover, the dominant contribution to the separation information comes from regions in the vicinity of these zeros. We experimentally confirm this idea, demonstrating significant superresolution using natural or artificially created spectral doublets.

[1]  P. Hemmer,et al.  The universal scaling laws that determine the achievable resolution in different schemes for super-resolution imaging , 2012 .

[2]  M. Tsang Conservative classical and quantum resolution limits for incoherent imaging , 2016, 1605.03799.

[3]  S. Ram,et al.  Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Christoph Simon,et al.  Fisher information for far-field linear optical superresolution via homodyne or heterodyne detection in a higher-order local oscillator mode , 2017, 1706.08633.

[5]  Z Hradil,et al.  Optimal measurements for resolution beyond the Rayleigh limit. , 2017, Optics letters.

[6]  J. Řeháček,et al.  Tempering Rayleigh’s curse with PSF shaping , 2018, Optica.

[7]  Saikat Guha,et al.  Fundamental limit of resolving two point sources limited by an arbitrary point spread function , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[8]  Z. Hradil,et al.  Optical resolution from Fisher information , 2016 .

[9]  Stefano Pirandola,et al.  Ultimate Precision Bound of Quantum and Subwavelength Imaging. , 2016, Physical review letters.

[10]  Hugo Ferretti,et al.  Beating Rayleigh's Curse by Imaging Using Phase Information. , 2016, Physical review letters.

[11]  Sudhakar Prasad,et al.  Quantum Limited Superresolution of an Incoherent Source Pair in Three Dimensions. , 2018, Physical review letters.

[12]  Mankei Tsang,et al.  Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit. , 2016, Physical review letters.

[13]  Adriaan van den Bos,et al.  Resolution: a survey , 1997 .

[14]  Mankei Tsang Subdiffraction incoherent optical imaging via spatial-mode demultiplexing , 2017 .

[15]  Joseph A. O'Sullivan,et al.  Spectrum estimation from quantum-limited interferograms , 2004, IEEE Transactions on Signal Processing.

[16]  Mankei Tsang,et al.  Interferometric superlocalization of two incoherent optical point sources. , 2015, Optics express.

[17]  Christoph Simon,et al.  Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode , 2016, 1606.02662.

[18]  Alexander Ling,et al.  Fault-tolerant and finite-error localization for point emitters within the diffraction limit. , 2016, Optics express.

[19]  Konrad Banaszek,et al.  Beating the Rayleigh Limit Using Two-Photon Interference. , 2018, Physical review letters.

[20]  Jaroslav Rehacek,et al.  Achieving the ultimate optical resolution , 2016, EPJ Web of Conferences.

[21]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[22]  Mankei Tsang,et al.  Quantum limit for two-dimensional resolution of two incoherent optical point sources , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).