Nearly Round Spheres Look Convex
暂无分享,去创建一个
[1] A. Weinstein. The cut locus and conjugate locus of a Riemannian manifold , 1968 .
[2] A. Figalli,et al. Continuity of optimal transport maps and convexity of injectivity domains on small deformations of 𝕊2 , 2009 .
[3] Cédric Villani,et al. An Approximation Lemma about the Cut Locus, with Applications in Optimal Transport Theory , 2008 .
[4] G. Loeper. On the regularity of solutions of optimal transportation problems , 2009 .
[5] Cédric Villani,et al. On the Ma–Trudinger–Wang curvature on surfaces , 2010 .
[6] Henri Poincaré,et al. Sur les lignes géodésiques des surfaces convexes , 1905 .
[7] Alessio Figalli,et al. REGULARITY OF OPTIMAL TRANSPORT MAPS (after Ma{Trudinger{Wang and Loeper) , 2009 .
[8] Louis Nirenberg,et al. The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton‐Jacobi equations , 2003, math/0306122.
[9] N. Trudinger,et al. Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .
[10] R. McCann,et al. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .
[11] Jin-ichi Itoh,et al. The cut loci and the conjugate loci on ellipsoids , 2004 .
[12] A. Mennucci,et al. Hamilton—Jacobi Equations and Distance Functions on Riemannian Manifolds , 2002, math/0201296.
[13] Robert J. McCann,et al. Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular) , 2008, 0806.0351.
[14] Louis Nirenberg,et al. Regularity of the distance function to the boundary , 2005 .
[15] Michael A. Buchner,et al. The structure of the cut locus in dimension less than or equal to six , 1978 .
[16] Philippe Delanoë,et al. Regularity of optimal transport on compact, locally nearly spherical, manifolds , 2010 .
[17] R. McCann,et al. Continuity, curvature, and the general covariance of optimal transportation , 2007, 0712.3077.
[18] I. Holopainen. Riemannian Geometry , 1927, Nature.
[19] H. Fédérer. Geometric Measure Theory , 1969 .
[20] U. Abresch,et al. Injectivity Radius Estimates and Sphere Theorems , 1997 .
[21] Yuxin Ge. Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds ∗ , 2008 .
[22] Cédric Villani,et al. NECESSARY AND SUFFICIENT CONDITIONS FOR CONTINUITY OF OPTIMAL TRANSPORT MAPS ON RIEMANNIAN MANIFOLDS , 2011 .
[23] H. Schubert,et al. O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .
[24] C. Villani. STABILITY OF A 4TH-ORDER CURVATURE CONDITION ARISING IN OPTIMAL TRANSPORT THEORY , 2008 .
[25] Ludovic Rifford,et al. Regularity properties of the distance functions to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry , 2008, 0812.4107.
[26] L. Evans. Measure theory and fine properties of functions , 1992 .
[27] M. Buchner. Stability of the cut locus in dimensions less than or equal to 6 , 1977 .
[28] N. Hitchin. A panoramic view of riemannian geometry , 2006 .
[29] W. Klingenberg. Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung , 1961 .
[30] C. Villani. Optimal Transport: Old and New , 2008 .
[31] G. Loeper. Regularity of Optimal Maps on the Sphere: the Quadratic Cost and the Reflector Antenna , 2013, 1301.6229.
[32] Karsten Grove,et al. A generalized sphere theorem , 1977 .
[33] Jin-ichi Itoh,et al. The Lipschitz continuity of the distance function to the cut locus , 2000 .
[34] P. Cannarsa,et al. Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .
[35] C. Villani,et al. Regularity of optimal transport in curved geometry: The nonfocal case , 2010 .
[36] H. Gluck,et al. The existence of nontriangulable cut loci , 1976 .