Nearly Round Spheres Look Convex

We prove that a Riemannian manifold $(M,g)$, close enough to the round sphere in the $C^4$ topology, has uniformly convex injectivity domains---so $M$ appears uniformly convex in any exponential chart. The proof is based on the Ma-Trudinger-Wang nonlocal curvature tensor, which originates from the regularity theory of optimal transport.

[1]  A. Weinstein The cut locus and conjugate locus of a Riemannian manifold , 1968 .

[2]  A. Figalli,et al.  Continuity of optimal transport maps and convexity of injectivity domains on small deformations of 𝕊2 , 2009 .

[3]  Cédric Villani,et al.  An Approximation Lemma about the Cut Locus, with Applications in Optimal Transport Theory , 2008 .

[4]  G. Loeper On the regularity of solutions of optimal transportation problems , 2009 .

[5]  Cédric Villani,et al.  On the Ma–Trudinger–Wang curvature on surfaces , 2010 .

[6]  Henri Poincaré,et al.  Sur les lignes géodésiques des surfaces convexes , 1905 .

[7]  Alessio Figalli,et al.  REGULARITY OF OPTIMAL TRANSPORT MAPS (after Ma{Trudinger{Wang and Loeper) , 2009 .

[8]  Louis Nirenberg,et al.  The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton‐Jacobi equations , 2003, math/0306122.

[9]  N. Trudinger,et al.  Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .

[10]  R. McCann,et al.  A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .

[11]  Jin-ichi Itoh,et al.  The cut loci and the conjugate loci on ellipsoids , 2004 .

[12]  A. Mennucci,et al.  Hamilton—Jacobi Equations and Distance Functions on Riemannian Manifolds , 2002, math/0201296.

[13]  Robert J. McCann,et al.  Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular) , 2008, 0806.0351.

[14]  Louis Nirenberg,et al.  Regularity of the distance function to the boundary , 2005 .

[15]  Michael A. Buchner,et al.  The structure of the cut locus in dimension less than or equal to six , 1978 .

[16]  Philippe Delanoë,et al.  Regularity of optimal transport on compact, locally nearly spherical, manifolds , 2010 .

[17]  R. McCann,et al.  Continuity, curvature, and the general covariance of optimal transportation , 2007, 0712.3077.

[18]  I. Holopainen Riemannian Geometry , 1927, Nature.

[19]  H. Fédérer Geometric Measure Theory , 1969 .

[20]  U. Abresch,et al.  Injectivity Radius Estimates and Sphere Theorems , 1997 .

[21]  Yuxin Ge Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds ∗ , 2008 .

[22]  Cédric Villani,et al.  NECESSARY AND SUFFICIENT CONDITIONS FOR CONTINUITY OF OPTIMAL TRANSPORT MAPS ON RIEMANNIAN MANIFOLDS , 2011 .

[23]  H. Schubert,et al.  O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .

[24]  C. Villani STABILITY OF A 4TH-ORDER CURVATURE CONDITION ARISING IN OPTIMAL TRANSPORT THEORY , 2008 .

[25]  Ludovic Rifford,et al.  Regularity properties of the distance functions to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry , 2008, 0812.4107.

[26]  L. Evans Measure theory and fine properties of functions , 1992 .

[27]  M. Buchner Stability of the cut locus in dimensions less than or equal to 6 , 1977 .

[28]  N. Hitchin A panoramic view of riemannian geometry , 2006 .

[29]  W. Klingenberg Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung , 1961 .

[30]  C. Villani Optimal Transport: Old and New , 2008 .

[31]  G. Loeper Regularity of Optimal Maps on the Sphere: the Quadratic Cost and the Reflector Antenna , 2013, 1301.6229.

[32]  Karsten Grove,et al.  A generalized sphere theorem , 1977 .

[33]  Jin-ichi Itoh,et al.  The Lipschitz continuity of the distance function to the cut locus , 2000 .

[34]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[35]  C. Villani,et al.  Regularity of optimal transport in curved geometry: The nonfocal case , 2010 .

[36]  H. Gluck,et al.  The existence of nontriangulable cut loci , 1976 .