Neutrino mass ordering studies with IceCube-DeepCore

The IceCube Neutrino Observatory at the South Pole is the world's largest neutrino detector with over 1km^3 of instrumented Antarctic ice. While it has been primarily designed to observe astrophysical neutrinos, this size also allows it to collect vast quantities of atmospheric neutrinos. These high-statistics datasets allow for measurements of the properties of neutrinos, in particular the phenomena of neutrino oscillation. One of the outstanding questions in this field is that of the neutrino mass ordering (NMO). The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy extension to IceCube for which a determination of the NMO is a priority science goal. The current low-energy atmospheric neutrino experiment at the South Pole, DeepCore, has been successfully collecting data since 2011. In this thesis the potential of this existing data to determine the NMO has been explored. While it was not expected to have a large sensitivity, this work has explored a Feldman-Cousins treatment for converting the delta-chi^2 between the two discrete mass ordering hypotheses into the standard Gaussian significance metric. Using 2.7 years of data from the DeepCore detector, the inverted mass ordering was preferred at the level of 0.05sigma. The second aspect of this thesis was to study the impact of the systematic uncertainties on the NMO determination. This particular analysis was actually statistics-limited and so the only impactful systematic uncertainties were the parameters that govern atmospheric neutrino oscillations, theta_23 and Deltam^2_31. Therefore, to improve the NMO results, these parameters were constrained by including the global information on them in the fits, yielding a new NMO sensitivity of 0.29sigma. This new global fit also yields measurements of the oscillation parameters of Deltam^2_32,NO=(2.443+/-0.037)e-3eV^2 and sin^2theta_23,NO=0.442+0.026-0.018 for the hypothesis of the normal mass ordering and Deltam^2_32,IO=(-2.510+/-0.036)e-3eV^2 and sin^2theta_23,IO=0.579+0.019-0.021 for the hypothesis of the inverted mass ordering. In addition to the work on the neutrino mass ordering, this thesis also investigated two issues related to predictions of the flux of atmospheric particles. The first related to the treatment of the predictions of the atmospheric neutrino flux, provided in binned tables. Crucially, these contain values representative of the integral of the flux across that bin and so an integral-preserving interpolation must be used. One such method will be presented along with a discussion of how it performs in the two-dimensional case of the atmospheric neutrino flux. The second issue related to quantifying uncertainties on the background muon distributions observed with the IceCube detector coming from the uncertainties on the initial cosmic ray flux. This involved performing a global fit on the available cosmic ray flux measurements and then propagating these uncertainties in to the muon distributions. To finalise this section, the exact manner in which these uncertainties can be included in the physics analyses of IceCube will be discussed.

[1]  P. G. Isar,et al.  The Pierre Auger Cosmic Ray Observatory , 2015, 1502.01323.

[2]  L. Jacchia Revised static models of the thermosphere and exosphere with empirical temperature profiles , 1971 .

[3]  Irvine,et al.  The T2K Experiment , 2009, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[4]  A. E. Cole,et al.  Defining constants, equations, and abbreviated tables of the 1975 US Standard Atmosphere , 1976 .

[5]  S. Kim,et al.  Observation of the East-West Anisotropy of the Atmospheric Neutrino Flux , 1999 .

[6]  John C. Gregory,et al.  Cosmic-Ray Proton and Helium Spectra: Results from the JACEE Experiment , 1998 .

[7]  J. P. Barron,et al.  Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore , 2017, 1707.07081.

[8]  C. K. Lee,et al.  Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector , 1998 .

[9]  B. Pontecorvo Neutrino Experiments and the Problem of Conservation of Leptonic Charge , 1967 .

[10]  D. P. Méndez,et al.  Constraints on Oscillation Parameters from ν_{e} Appearance and ν_{μ} Disappearance in NOvA. , 2017, Physical review letters.

[11]  E. Lisi,et al.  Global analysis of neutrino masses and mixing , 2006 .

[12]  The Gaussian CL s method for searches of new physics , 2014, 1407.5052.

[13]  J. P. Rodrigues,et al.  The design and performance of IceCube DeepCore , 2011, 1109.6096.

[14]  W. Pauli,et al.  Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1925 .

[15]  A. Angelis Atmospheric ionization and cosmic rays: studies and measurements before 1912 , 2012, 1208.6527.

[16]  P. O. Hulth,et al.  Search for astrophysical tau neutrinos in three years of IceCube data , 2015, Physical Review D.

[17]  R. Sagdeev,et al.  Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. , 2014, Physical review letters.

[18]  Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation , 2015, 1510.08127.

[19]  M. Chiarini,et al.  Complete results for five years of GNO solar neutrino observations , 2005, hep-ex/0504037.

[20]  D. P. Méndez,et al.  Measurement of the Neutrino Mixing Angle θ_{23} in NOvA. , 2017, Physical review letters.

[21]  F. B. Harrison,et al.  Detection of the Free Neutrino: a Confirmation. , 1956, Science.

[22]  S. Seo,et al.  New results from RENO , 2013, Proceedings of The 39th International Conference on High Energy Physics — PoS(ICHEP2018).

[23]  The Super-Kamiokande Collaboration,et al.  Evidence for oscillation of atmospheric neutrinos , 1998, hep-ex/9807003.

[24]  R. Minzner The 1976 Standard Atmosphere and its relationship to earlier standards , 1977 .

[25]  A. Roberts The birth of high-energy neutrino astronomy: A personal history of the DUMAND project , 1992 .

[26]  J. Huston,et al.  Uncertainties of predictions from parton distribution functions , 2001 .

[27]  J. P. Rodrigues,et al.  Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube , 2014, European Physical Journal C: Particles and Fields.

[28]  P. Dirac The quantum theory of the electron , 1928 .

[29]  C. Anderson The Positive Electron , 1933 .

[30]  S. Parke,et al.  Unitarity and the three flavor neutrino mixing matrix , 2015, 1508.05095.

[31]  J. C. Ward,et al.  Weak and electromagnetic interactions , 1959 .

[32]  Mattias Blennow,et al.  Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering , 2013, 1311.1822.

[33]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[34]  G. P. Zeller,et al.  From eV to EeV: Neutrino Cross Sections Across Energy Scales , 2012, 1305.7513.

[35]  J. Learned,et al.  Neutrino decay and atmospheric neutrinos , 1999, hep-ph/9907421.

[36]  P. Lipari The east-west effect for atmospheric neutrinos , 2000, hep-ph/0003013.

[37]  R. Mitalas,et al.  On the Photon Diffusion Time Scale for the Sun , 1992 .

[38]  P. O. Hulth,et al.  Search for dark matter annihilation in the Galactic Center with IceCube-79 , 2015, 1505.07259.

[39]  A. Smirnov,et al.  Probing non-standard interaction of neutrinos with IceCube and DeepCore , 2013, 1304.1042.

[40]  Parametric resonance of neutrino oscillations and passage of solar and atmospheric neutrinos through the earth , 1998, hep-ph/9805272.

[41]  Y. Wang,et al.  High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube , 2016, 1602.05411.

[42]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[43]  G. Merino,et al.  Search for sterile neutrino mixing using three years of IceCube DeepCore data , 2017, 1702.05160.

[44]  M. Dunkman Measurement of Atmospheric Muon Neutrino Disappearance with IceCube-DeepCore , 2015 .

[45]  Avid,et al.  A database of charged cosmic rays , 2013, 1302.5525.

[46]  Valery Zurbanov,et al.  The Baikal underwater neutrino telescope: Design, performance, and first results , 1997 .

[47]  S. Sarkar,et al.  The prompt atmospheric neutrino flux in the light of LHCb , 2015, Journal of High Energy Physics.

[48]  W. Arnett,et al.  Neutrino mass limits from SN1987A. , 1987, Physical review letters.

[49]  K. Kasahara,et al.  Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model , 2015, 1502.03916.

[50]  A. Dighe,et al.  Enhancing sensitivity to neutrino parameters at INO combining muon and hadron information , 2014, 1406.3689.

[51]  C Bozzi,et al.  Evidence for an excess of B → D(*)τν decays , 2012, Physical review letters.

[52]  C. Ishihara Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande , 2009 .

[53]  M.Tada,et al.  Neutrino oscillation physics potential of the T2K experiment , 2014, 1409.7469.

[54]  P. O. Hulth,et al.  Measurement of the atmospheric νe flux in IceCube. , 2012, Physical review letters.

[55]  P. O. Hulth,et al.  Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry , 2016, 1601.00653.

[56]  T.Montaruli,et al.  The FLUKA atmospheric neutrino flux calculation , 2002, hep-ph/0207035.

[57]  J. L. Lopes,et al.  A model for leptons , 1977 .

[58]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[59]  P. F. Pérez,et al.  Proton stability in grand unified theories, in strings and in branes , 2006, hep-ph/0601023.

[60]  Henry Band Observation of electron-antineutrino disappearance at Daya Bay. , 2012 .

[61]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[62]  W. Pauli The Connection Between Spin and Statistics , 1940 .

[63]  T. G. Guzik,et al.  Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results , 2009, 1101.3246.

[64]  T. Stanev,et al.  Ultrahigh energy cosmic rays , 2011, 1103.0031.

[65]  T. Kajita,et al.  Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data , 2006, astro-ph/0611418.

[66]  L. Stanco The next challenge for neutrinos: the mass ordering , 2016, 1610.05533.

[67]  J. Kelley Event triggering in the IceCube data acquisition system , 2014 .

[68]  G. N. Perdue,et al.  Design, calibration, and performance of the MINERvA detector , 2013, 1305.5199.

[69]  J. Lesgourgues,et al.  Neutrino Mass from Cosmology , 2012, 1212.6154.

[70]  Minoru Yoshida,et al.  Evidence for the appearance of atmospheric tau neutrinos in super-Kamiokande. , 2012, Physical review letters.

[71]  E. Lisi,et al.  Probing possible decoherence effects in atmospheric neutrino oscillations. , 2000, Physical review letters.

[72]  Simon P. Swordy,et al.  VERITAS: the Very Energetic Radiation Imaging Telescope Array System , 1999 .

[73]  M. Reno,et al.  Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects , 2016, 1607.00193.

[74]  Zheng Wang,et al.  Neutrino Physics with JUNO , 2015, 1507.05613.

[75]  F. Halzen,et al.  Invited review article: IceCube: an instrument for neutrino astronomy. , 2010, The Review of scientific instruments.

[76]  P. O. Hulth,et al.  Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector , 2011, 1104.5187.

[77]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[78]  J. P. Rodrigues,et al.  Measurement of South Pole ice transparency with the IceCube LED calibration system , 2013, 1301.5361.

[79]  Hiroshi Nakashima,et al.  PHITS: A particle and heavy ion transport code system , 2006 .

[80]  S. King,et al.  Neutrino mass and mixing with discrete symmetry , 2013, Reports on progress in physics. Physical Society.

[81]  M. Spurio,et al.  Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE) , 2008, Comput. Phys. Commun..

[82]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[83]  J. P. Rodrigues,et al.  Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data , 2014, 1410.7227.

[84]  P. O. Hulth,et al.  SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCES WITH 3 yr OF IceCube DATA , 2013, 1307.6669.

[85]  A. M. Guler,et al.  Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment. , 2015, Physical review letters.

[86]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[87]  C. Anderson,et al.  Note on the nature of cosmic-ray particles , 1937 .

[88]  F. Suekane Neutrino oscillations : a practical guide to basics and applications , 2015 .

[89]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[90]  Z. Maki,et al.  Remarks on the unified model of elementary particles , 1962 .

[91]  L. K. Pik Study of the neutrino mass hierarchy with the atmospheric neutrino data observed in Super-Kamiokande , 2012 .

[92]  S. Hahn,et al.  Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. , 2013, Physical review letters.

[93]  M. D'Agostino First Evidence For Atmospheric Neutrino-Induced Cascades with the IceCube Detector , 2009, 0910.2555.

[94]  J. P. Rodrigues,et al.  IceTop: The Surface Component of IceCube , 2003, 1207.6326.

[95]  G. Kerkyacharian,et al.  Testing the isotropy of high energy cosmic rays using spherical needlets , 2011, 1107.5658.

[96]  R.Gill,et al.  Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects , 2015 .

[97]  G. Merino,et al.  OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA , 2016, The Astrophysical Journal.

[98]  T. Gaisser,et al.  Calculation of conventional and prompt lepton fluxes at very high energy , 2015, 1503.00544.

[99]  P. O. Hulth,et al.  Measurement of the atmospheric νe spectrum with IceCube , 2015, 1504.03753.

[100]  The dawn of multi-messenger astronomy , 2018 .

[101]  M. Hartz,et al.  First combined analysis of neutrino and antineutrino oscillations at T2K , 2017, 1701.00432.

[102]  D. Palmer,et al.  Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era , 2015, 1501.04435.

[103]  R. Hatcher,et al.  First measurement of muon-neutrino disappearance in NOvA , 2016, 1601.05037.

[104]  J. Evslin,et al.  Confidence in a neutrino mass hierarchy determination , 2013 .

[105]  Y. Becherini,et al.  A parameterisation of single and multiple muons in the deep water or ice , 2006 .

[106]  M. Hartz,et al.  Precise Measurement of the Neutrino Mixing Parameter \theta_{23} from Muon Neutrino Disappearance in an Off-axis Beam , 2014, 1403.1532.

[107]  M. Hartz,et al.  Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 x 10(21) protons on target , 2017, 1704.06409.

[108]  J. S. Whitaker,et al.  Evidence for Anomalous Lepton Production in e+ - e- Annihilation , 1975 .

[109]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .

[110]  Justin Evans,et al.  Uncertainties in atmospheric muon-neutrino fluxes arising from cosmic-ray primaries , 2016, 1612.03219.

[111]  T. Wyatt High-energy colliders and the rise of the standard model , 2007, Nature.

[112]  A. Schukraft,et al.  IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica , 2014, 1412.5106.

[113]  J. Lesgourgues,et al.  Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.

[114]  Toboada Fermin,et al.  Search for high energy neutrino induced cascades with the AMANDA-B10 detector , 2002 .

[115]  T. Kajita,et al.  Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model , 2011, 1102.2688.

[116]  Eiji Kamioka,et al.  Cosmic-Ray Spectra and Composition in the Energy Range of 10-1000 TeV per Particle Obtained by the RUNJOB Experiment , 2005 .

[117]  A. Aurisano,et al.  Combined analysis of νμ disappearance and νμ→νe appearance in MINOS using accelerator and atmospheric neutrinos. , 2014, Physical review letters.

[118]  A. V. Karelin,et al.  Measurements of cosmic-ray proton and helium spectra with the PAMELA calorimeter , 2013 .

[119]  V. Sorokin Smirnov , 2019, 21.

[120]  K. Anraku,et al.  Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer , 2004, astro-ph/0403704.

[121]  T. Schwetz,et al.  Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity , 2016, Journal of High Energy Physics.

[122]  B. Viren,et al.  The Super-Kamiokande detector , 2003 .

[123]  G. Bazilevskaya,et al.  Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers , 2011 .

[124]  Martin Schmitz,et al.  PROPOSAL: A tool for propagation of charged leptons , 2013, Comput. Phys. Commun..

[125]  J. Farine,et al.  Measurement of the rate of νe+d → p+p+e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory , 2002 .

[126]  The IceCube Collaboration The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping , 2008 .

[127]  Brian Hamilton,et al.  International Geomagnetic Reference Field: the 12th generation , 2015, Earth, Planets and Space.

[128]  S. Ter-Antonyan,et al.  Searches for Sterile Neutrinos with the IceCube Detector. , 2016, Physical review letters.

[129]  Lincoln Wolfenstein,et al.  Neutrino Oscillations in Matter , 1978 .

[130]  I. Taboada A review of particle astrophysics with ICECUBE , 2012 .

[131]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[132]  G. C. Barbarino,et al.  PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra , 2011, Science.

[133]  P. O. Hulth,et al.  Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo , 2014, The European Physical Journal C.

[134]  G. Karagiorgi,et al.  PINGU: A Vision for Neutrino and Particle Physics at the South Pole , 2017 .

[135]  A. Collaboration ANTARES: The first undersea neutrino telescope , 2011, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[136]  Johannes Ranft,et al.  The Monte Carlo Event Generator DPMJET-III , 2000 .

[137]  R. Wendell Atmospheric Results from Super-Kamiokande , 2014, 1412.5234.

[138]  P. Favali,et al.  Letter of intent for KM3NeT 2.0 , 2016, 1601.07459.

[139]  T Meures,et al.  Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data , 2014, 1405.5303.

[140]  I. V. Yashin,et al.  Energy Spectra of Cosmic Rays above 2 TeV as Measured by the 'SOKOL' Apparatus , 1993 .

[141]  J. N. Abdurashitov,et al.  Measurement of the solar neutrino capture rate in SAGE , 2003 .

[142]  H. Aihara,et al.  Letter of Intent: The Hyper-Kamiokande Experiment --- Detector Design and Physics Potential --- , 2011, 1109.3262.

[143]  S. Glashow Partial Symmetries of Weak Interactions , 1961 .

[144]  M. Gonzalez-Garcia Phenomenology with Massive Neutrinos , 2007 .

[145]  Andrea Ianni,et al.  Precision measurement of the (7)Be solar neutrino interaction rate in Borexino. , 2011, Physical review letters.

[146]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[147]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[148]  A. C. Kaboth,et al.  Accelerated event-by-event neutrino oscillation reweighting with matter effects on a GPU , 2013, 1311.7579.

[149]  L. Patrizii,et al.  Status of Searches for Magnetic Monopoles , 2015, 1510.07125.

[150]  P. N. Smith,et al.  The Magnetized Steel and Scintillator Calorimeters of the MINOS Experiment , 2008 .

[151]  A. Heijboer,et al.  A Fast Algorithm for Muon Track Reconstruction and its Application to the ANTARES Neutrino Telescope , 2011, 1105.4116.

[152]  D. Chirkin,et al.  Muon Monte Carlo: A High-precision tool for muon propagation through matter , 2004 .

[153]  N. B. Conklin,et al.  COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE FIRST CREAM FLIGHT , 2011, 1102.2575.

[154]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[155]  T. Akdogan,et al.  Observation of tau neutrino interactions , 2001 .

[156]  John N. Bahcall,et al.  New solar opacities, abundances, helioseismology, and neutrino fluxes , 2005 .

[157]  The IceCube Collaboration Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU) , 2014, 1401.2046.

[158]  Minos,et al.  New results from MINOS and MINOS+ , 2017 .

[159]  M. Decowski,et al.  Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.

[160]  D. Cowen,et al.  Optical follow-up of high-energy neutrinos detected by IceCube , 2009, 0909.0631.

[161]  C. Kraus,et al.  Final Results from phase II of the Mainz Neutrino Mass Search in Tritium β Decay , 2004 .

[162]  The Borexino Collaboration First evidence of pep solar neutrinos by direct detection in Borexino , 2011, 1110.3230.

[163]  P. O. Hulth,et al.  THE DETECTION OF A SN IIn IN OPTICAL FOLLOW-UP OBSERVATIONS OF ICECUBE NEUTRINO EVENTS , 2015, 1506.03115.

[164]  J. G. Gonzalez,et al.  All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore , 2016, 1606.00209.

[165]  J. C. Mitchell,et al.  Improved search for Muon-neutrino to electron-neutrino oscillations in MINOS. , 2011, Physical review letters.

[166]  Juan Pablo Yáñez Garza Measurement of neutrino oscillations in atmospheric neutrinos with the IceCube DeepCore detector , 2014 .

[167]  J. Hoerandel Early Cosmic-Ray Work Published in German , 2012, 1212.0706.

[168]  Tejpreet Singh Golan,et al.  Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. , 2011, Physical review letters.

[169]  P. O. Hulth,et al.  Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice , 2001, Nature.