Improved Algorithm sf or Per manent and Permanental Polynomial of Sparse Graph

A novel algorithm for permanent of sparse graph is proposed, which combines an ew per manent expansion formula and graph bisection. Hence the improved algorithm for permental polynomial of sparse graph is followed. Computational results on the permanents and permanental polynomials of fullerene graphs are presented. The new algorithms increase the computable scale for permanents and permanental polynomials dramatically on PC within acceptable time.

[1]  Fengshan Bai,et al.  An efficient algorithm for computing permanental polynomials of graphs , 2006, Comput. Phys. Commun..

[2]  Ernesto Estrada,et al.  Chemical Graph Theory , 2013 .

[3]  Fengshan Bai,et al.  Remarks on the Relations Between the Permanental and Characteristic Polynomials of Fullerenes , 2011 .

[4]  Heng Liang,et al.  Computing monomer-dimer systems through matrix permanent. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Frank Thomson Leighton,et al.  Graph bisection algorithms with good average case behavior , 1984, Comb..

[6]  Ivan Gutman Permanents of Adjacency Matrices and Their Dependence on Molecular Structure , 1998 .

[7]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[8]  Gordon G. Cash,et al.  Permanental Polynomials of the Smaller Fullerenes , 2000, J. Chem. Inf. Comput. Sci..

[9]  Gordon G. Cash,et al.  A Differential-Operator Approach to the Permanental Polynomial , 2002, J. Chem. Inf. Comput. Sci..

[10]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[11]  Michael Luby,et al.  Approximating the Permanent of Graphs with Large Factors , 1992, Theor. Comput. Sci..

[12]  Fengshan Bai,et al.  A partially structure-preserving algorithm for the permanents of adjacency matrices of fullerenes , 2004, Comput. Phys. Commun..

[13]  Albert Nijenhuis,et al.  Combinatorial Algorithms for Computers and Calculators , 1978 .

[14]  Gordon G. Cash,et al.  The permanent of 0,1 matrices and Kallman's algorithm , 2000 .

[15]  I. Beichl,et al.  Approximating the Permanent via Importance Sampling with Application to the Dimer Covering Problem , 1999 .

[16]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[17]  Fengshan Bai,et al.  A hybrid algorithm for computing permanents of sparse matrices , 2006, Appl. Math. Comput..