Imposing FIR Structure on H2 Preview Tracking and Smoothing Solutions

In this paper we study continuous-time H2 feedforward tracking and estimation problems with FIR (finite impulse response) solutions. Both causal and non-causal solutions are considered. It is shown that these problems can be treated as special cases of static problems in the lifted domain, which, in turn, can be solved in terms of a two-point boundary value (Hamilton-Jacobi) system. This results in fixed dimension, closed-form solutions

[1]  J. J. Bongiorno,et al.  A Feedback Theory of Two-Degree-of-Freedom Optimal Wiener-Hopf Design , 1984, 1984 American Control Conference.

[2]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[3]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[4]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[5]  Lorenzo Ntogramatzidis,et al.  A Unified Approach to the Finite-Horizon Linear Quadratic Optimal Control Problem , 2007, Eur. J. Control.

[6]  J. Meditch A survey of data smoothing for linear and nonlinear dynamic systems , 1973 .

[7]  Israel Gohberg,et al.  Time varying linear systems with boundary conditions and integral operators. I. The transfer operator and its properties , 1984 .

[8]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[9]  Alfred M. Bruckstein,et al.  Recursive limited memory filtering and scattering theory , 1985, IEEE Trans. Inf. Theory.

[10]  Leonid Mirkin,et al.  On Geometric and Analytic Constraints in the ${H}^{{\infty} }$ Fixed-Lag Smoothing , 2007, IEEE Transactions on Automatic Control.

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Thomas B. Sheridan,et al.  Three Models of Preview Control , 1966 .

[13]  Bassam Bamieh,et al.  The 2 problem for sampled-data systems , 1992, Systems & Control Letters.

[14]  Domenico Prattichizzo,et al.  H2 optimal decoupling firs , 2002 .

[15]  Leonid Mirkin,et al.  A new representation of the parameters of lifted systems , 1999, IEEE Trans. Autom. Control..

[16]  I. Gohberg,et al.  Classes of Linear Operators , 1990 .

[17]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[18]  Gjerrit Meinsma,et al.  Control of systems with I/O delay via reduction to a one-block problem , 2002, IEEE Trans. Autom. Control..

[19]  M. Tomizuka Optimal continuous finite preview problem , 1975 .

[20]  Bassam Bamieh,et al.  The H 2 problem for sampled-data systems m for sampled-data systems , 1992 .

[21]  W. H. Kwon,et al.  FIR filters and recursive forms for continuous time-invariant state-space models , 1987 .