Generalized Nash equilibrium problems and Newton methods

The generalized Nash equilibrium problem, where the feasible sets of the players may depend on the other players’ strategies, is emerging as an important modeling tool. However, its use is limited by its great analytical complexity. We consider several Newton methods, analyze their features and compare their range of applicability. We illustrate in detail the results obtained by applying them to a model for internet switching.

[1]  H. Nikaidô,et al.  Note on non-cooperative convex game , 1955 .

[2]  Francisco Facchinei,et al.  A Theoretical and Numerical Comparison of Some Semismooth Algorithms for Complementarity Problems , 2000, Comput. Optim. Appl..

[3]  J. Krawczyk,et al.  Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets , 2004, IEEE Transactions on Power Systems.

[4]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[5]  Andreas Fischer,et al.  Local behavior of an iterative framework for generalized equations with nonisolated solutions , 2002, Math. Program..

[6]  Francisco Facchinei,et al.  On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..

[7]  A. Bensoussan Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .

[8]  Francisco Facchinei,et al.  The Semismooth Algorithm for Large Scale Complementarity Problems , 2001, INFORMS J. Comput..

[9]  J. Cardell Market power and strategic interaction in electricity networks , 1997 .

[10]  Francisco Facchinei,et al.  Exact penalty functions for generalized Nash problems , 2006 .

[11]  Stan Uryasev,et al.  Relaxation algorithms to find Nash equilibria with economic applications , 2000 .

[12]  N. Josephy Newton's Method for Generalized Equations. , 1979 .

[13]  M. Roma,et al.  Large-Scale Nonlinear Optimization , 2006 .

[14]  Martin Grötschel,et al.  Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.

[15]  Ya-Xiang Yuan,et al.  On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.

[16]  J. Goodman Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .

[17]  R. Rubinstein,et al.  On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..

[18]  Francisco Facchinei,et al.  A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems , 1997, Math. Program..

[19]  T. Başar,et al.  Dynamic Noncooperative Game Theory, 2nd Edition , 1998 .

[20]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[21]  Andreas Fischer,et al.  On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..

[22]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[23]  P. Harker Generalized Nash games and quasi-variational inequalities , 1991 .

[24]  Stephen M. Robinson,et al.  Shadow Prices for Measures of Effectiveness, I: Linear Model , 1993, Oper. Res..

[25]  Stephen M. Robinson,et al.  Generalized Equations , 1982, ISMP.

[26]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[27]  Benjamin F. Hobbs,et al.  Leader-Follower Equilibria for Electric Power and NOx Allowances Markets , 2006, Comput. Manag. Sci..

[28]  Masao Fukushima,et al.  Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..

[29]  L. McKenzie,et al.  ON THE EXISTENCE OF GENERAL EQUILIBRIUM FOR A COMPETITIVE MARKET , 1959 .

[30]  J. Krawczyk,et al.  Relaxation Algorithms in Finding Nash Equilibria , 1998 .

[31]  Peter W. Christensen,et al.  A semi-smooth newton method for elasto-plastic contact problems , 2002 .

[32]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .