Generalized Nash equilibrium problems and Newton methods
暂无分享,去创建一个
Francisco Facchinei | Andreas Fischer | Veronica Piccialli | F. Facchinei | A. Fischer | V. Piccialli
[1] H. Nikaidô,et al. Note on non-cooperative convex game , 1955 .
[2] Francisco Facchinei,et al. A Theoretical and Numerical Comparison of Some Semismooth Algorithms for Complementarity Problems , 2000, Comput. Optim. Appl..
[3] J. Krawczyk,et al. Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets , 2004, IEEE Transactions on Power Systems.
[4] Michal Kočvara,et al. Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .
[5] Andreas Fischer,et al. Local behavior of an iterative framework for generalized equations with nonisolated solutions , 2002, Math. Program..
[6] Francisco Facchinei,et al. On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..
[7] A. Bensoussan. Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .
[8] Francisco Facchinei,et al. The Semismooth Algorithm for Large Scale Complementarity Problems , 2001, INFORMS J. Comput..
[9] J. Cardell. Market power and strategic interaction in electricity networks , 1997 .
[10] Francisco Facchinei,et al. Exact penalty functions for generalized Nash problems , 2006 .
[11] Stan Uryasev,et al. Relaxation algorithms to find Nash equilibria with economic applications , 2000 .
[12] N. Josephy. Newton's Method for Generalized Equations. , 1979 .
[13] M. Roma,et al. Large-Scale Nonlinear Optimization , 2006 .
[14] Martin Grötschel,et al. Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.
[15] Ya-Xiang Yuan,et al. On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.
[16] J. Goodman. Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .
[17] R. Rubinstein,et al. On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..
[18] Francisco Facchinei,et al. A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems , 1997, Math. Program..
[19] T. Başar,et al. Dynamic Noncooperative Game Theory, 2nd Edition , 1998 .
[20] M. Fukushima,et al. On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .
[21] Andreas Fischer,et al. On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..
[22] T. Başar,et al. Dynamic Noncooperative Game Theory , 1982 .
[23] P. Harker. Generalized Nash games and quasi-variational inequalities , 1991 .
[24] Stephen M. Robinson,et al. Shadow Prices for Measures of Effectiveness, I: Linear Model , 1993, Oper. Res..
[25] Stephen M. Robinson,et al. Generalized Equations , 1982, ISMP.
[26] K. Arrow,et al. EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .
[27] Benjamin F. Hobbs,et al. Leader-Follower Equilibria for Electric Power and NOx Allowances Markets , 2006, Comput. Manag. Sci..
[28] Masao Fukushima,et al. Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..
[29] L. McKenzie,et al. ON THE EXISTENCE OF GENERAL EQUILIBRIUM FOR A COMPETITIVE MARKET , 1959 .
[30] J. Krawczyk,et al. Relaxation Algorithms in Finding Nash Equilibria , 1998 .
[31] Peter W. Christensen,et al. A semi-smooth newton method for elasto-plastic contact problems , 2002 .
[32] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .