Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides

The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains the existence of scaling relationships among these compounds.

[1]  Jan Rossmeisl,et al.  Density functional studies of functionalized graphitic materials with late transition metals for Oxygen Reduction Reactions. , 2011, Physical chemistry chemical physics : PCCP.

[2]  Heine Anton Hansen,et al.  Formation energies of rutile metal dioxides using density functional theory , 2009 .

[3]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[4]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[5]  T. Bligaard,et al.  Volcano Relation for the Deacon Process over Transition‐Metal Oxides , 2010 .

[6]  Venkatasubramanian Viswanathan,et al.  Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides , 2012 .

[7]  J. Nørskov,et al.  Ligand effects in heterogeneous catalysis and electrochemistry , 2007 .

[8]  S. Trasatti Electrocatalysis in the anodic evolution of oxygen and chlorine , 1984 .

[9]  J. Rossmeisl,et al.  Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. , 2012, Physical review letters.

[10]  Jens K. Nørskov,et al.  Optimizing Perovskites for the Water-Splitting Reaction , 2011, Science.

[11]  E. Sato,et al.  Electrocatalytic properties of transition metal oxides for oxygen evolution reaction , 1986 .

[12]  H. Gasteiger,et al.  Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode , 2010 .

[13]  Jingguang G. Chen,et al.  Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties , 2008 .

[14]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[15]  Maria Chan,et al.  Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. , 2012, Nature materials.

[16]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[17]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[18]  A. Vojvodić,et al.  Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO2(110) by Transition‐Metal Substitution , 2011 .

[19]  J. Kitchin,et al.  Identification of Sulfur-Tolerant Bimetallic Surfaces Using DFT Parametrized Models and Atomistic Thermodynamics , 2011 .

[20]  J Rossmeisl,et al.  On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. , 2011, The Journal of chemical physics.

[21]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[22]  J. Kitchin,et al.  Configurational correlations in the coverage dependent adsorption energies of oxygen atoms on late transition metal fcc(111) surfaces. , 2011, Journal of Chemical Physics.

[23]  A. Boudghene Stambouli,et al.  Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy , 2002 .

[24]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[25]  H. Metiu,et al.  Catalysis by doped oxides : CO oxidation by AuxCe1- xO2 , 2007 .

[26]  J. Nørskov,et al.  Effect of Strain on the Reactivity of Metal Surfaces , 1998 .

[27]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[28]  D. J. Mowbray,et al.  Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces , 2010, 1002.4834.

[29]  Marc T. M. Koper,et al.  Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis , 2011 .

[30]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[31]  J. Rossmeisl,et al.  Trends in stability of perovskite oxides. , 2010, Angewandte Chemie.

[32]  Thomas Bligaard,et al.  Electrochemical chlorine evolution at rutile oxide (110) surfaces. , 2010, Physical chemistry chemical physics : PCCP.

[33]  J. G. Chen,et al.  Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. , 2004, Physical review letters.

[34]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[35]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[36]  J. Tascón,et al.  Structure and Reactivity of Perovskite-Type Oxides , 1989 .

[37]  Horia Metiu,et al.  Density Functional Study of the CO Oxidation on a Doped Rutile TiO2(110): Effect of Ionic Au in Catalysis , 2006 .