Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle

[1]  A. Phillippy,et al.  High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2017, Nature Communications.

[2]  Edoardo Pasolli,et al.  Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of Staphylococcus aureus strains in a paediatric hospital , 2018, Genome Medicine.

[3]  Luke R. Thompson,et al.  Species-level functional profiling of metagenomes and metatranscriptomes , 2018, Nature Methods.

[4]  J. DiRuggiero,et al.  MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis , 2018, Microbiome.

[5]  Duy Tin Truong,et al.  Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome , 2018, Cell host & microbe.

[6]  A. Karkhane,et al.  Practical evaluation of 11 de novo assemblers in metagenome assembly. , 2018, Journal of microbiological methods.

[7]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[8]  Alice C. McHardy,et al.  AMBER: Assessment of Metagenome BinnERs , 2017, bioRxiv.

[9]  D. Hartl,et al.  Cohort Profile: The Madagascar Health and Environmental Research (MAHERY) study in north-eastern Madagascar. , 2017, International journal of epidemiology.

[10]  Luis Pedro Coelho,et al.  Subspecies in the global human gut microbiome , 2017, Molecular systems biology.

[11]  Jillian F Banfield,et al.  Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome , 2017, Nature Communications.

[12]  Johannes Alneberg,et al.  DESMAN: a new tool for de novo extraction of strains from metagenomes , 2017, Genome Biology.

[13]  N. Segata,et al.  Shotgun metagenomics, from sampling to analysis , 2017, Nature Biotechnology.

[14]  Donovan H. Parks,et al.  Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life , 2017, Nature Microbiology.

[15]  Rob Knight,et al.  Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania , 2017, Science.

[16]  Edoardo Pasolli,et al.  Large-scale comparative metagenomics of Blastocystis, a common member of the human gut microbiome , 2017, The ISME Journal.

[17]  Natalia N. Ivanova,et al.  Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea , 2017, Nature Biotechnology.

[18]  R. Mikut,et al.  The rumen microbiome: an underexplored resource for novel antimicrobial discovery , 2017, npj Biofilms and Microbiomes.

[19]  Duy Tin Truong,et al.  Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis , 2017, npj Biofilms and Microbiomes.

[20]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[21]  O. Reva,et al.  Assembling metagenomes, one community at a time , 2017, BMC Genomics.

[22]  R. Franklin,et al.  MinION TM nanopore sequencing of environmental metagenomes: a synthetic approach , 2017 .

[23]  Duy Tin Truong,et al.  Microbial strain-level population structure and genetic diversity from metagenomes , 2017, Genome research.

[24]  Paolo Manghi,et al.  Accessible, curated metagenomic data through ExperimentHub , 2017, Nature Methods.

[25]  Duy Tin Truong,et al.  Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling , 2016, mSystems.

[26]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[27]  Wenjun Liu,et al.  Unique Features of Ethnic Mongolian Gut Microbiome revealed by metagenomic analysis , 2016, Scientific Reports.

[28]  Luis Pedro Coelho,et al.  Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper , 2016, bioRxiv.

[29]  A. K. Singh,et al.  Mobile genes in the human microbiome are structured from global to individual scales , 2016, Nature.

[30]  K. Wrighton,et al.  The bright side of microbial dark matter: lessons learned from the uncultivated majority. , 2016, Current opinion in microbiology.

[31]  Nitin Kumar,et al.  Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation , 2016, Nature.

[32]  L. Pritchard,et al.  Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens , 2016 .

[33]  Michael Snyder,et al.  Synthetic long read sequencing reveals the composition and intraspecies diversity of the human microbiome , 2015, Nature Biotechnology.

[34]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[35]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[36]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[37]  Tom O. Delmont,et al.  Anvi’o: an advanced analysis and visualization platform for ‘omics data , 2015, PeerJ.

[38]  Duy Tin Truong,et al.  MetaPhlAn2 for enhanced metagenomic taxonomic profiling , 2015, Nature Methods.

[39]  Dongwan D. Kang,et al.  MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities , 2015, PeerJ.

[40]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[41]  S. Rampelli,et al.  Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota , 2015, Current Biology.

[42]  Timothy L. Tickle,et al.  Compact graphical representation of phylogenetic data and metadata with GraPhlAn , 2015, PeerJ.

[43]  Andrew J. Page,et al.  Roary: rapid large-scale prokaryote pan genome analysis , 2015, bioRxiv.

[44]  Cecil M. Lewis,et al.  Subsistence strategies in traditional societies distinguish gut microbiomes , 2015, Nature Communications.

[45]  Brian C. Thomas,et al.  Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development , 2015, eLife.

[46]  Yiming Bao,et al.  NCBI Viral Genomes Resource , 2014, Nucleic Acids Res..

[47]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[48]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[49]  V. Tremaroli,et al.  Resource Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life Graphical Abstract Highlights , 2022 .

[50]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[51]  S. Yooseph,et al.  Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle , 2014, Proceedings of the National Academy of Sciences.

[52]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[53]  Allyson L. Byrd,et al.  Biogeography and individuality shape function in the human skin metagenome , 2014, Nature.

[54]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[55]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[56]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[57]  James R. Cole,et al.  Ribosomal Database Project: data and tools for high throughput rRNA analysis , 2013, Nucleic Acids Res..

[58]  C. Huttenhower,et al.  PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes , 2013, Nature Communications.

[59]  Natalia N. Ivanova,et al.  Insights into the phylogeny and coding potential of microbial dark matter , 2013, Nature.

[60]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[61]  Sergey I. Nikolenko,et al.  BayesHammer: Bayesian clustering for error correction in single-cell sequencing , 2012, BMC Genomics.

[62]  Brian C. Thomas,et al.  Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization , 2013, Genome research.

[63]  Levi Waldron,et al.  Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples , 2012, Genome Biology.

[64]  C. Huttenhower,et al.  Metagenomic microbial community profiling using unique clade-specific marker genes , 2012, Nature Methods.

[65]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[66]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[67]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[68]  B. Weimer,et al.  Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. , 2011, Cell host & microbe.

[69]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[70]  S. Massart,et al.  Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa , 2010, Proceedings of the National Academy of Sciences.

[71]  R. Tanaka,et al.  Succinatimonas hippei gen. nov., sp. nov., isolated from human faeces. , 2010, International journal of systematic and evolutionary microbiology.

[72]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[73]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[74]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[75]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[76]  C. Yanofsky,et al.  Evolution of bacterial trp operons and their regulation. , 2008, Current opinion in microbiology.

[77]  Sarah C. Goslee,et al.  The ecodist Package for Dissimilarity-based Analysis of Ecological Data , 2007 .

[78]  A. Brune,et al.  The Termite Group I Phylum Is Highly Diverse and Widespread in the Environment , 2007, Applied and Environmental Microbiology.

[79]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[80]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[81]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[82]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[83]  D. Relman,et al.  Prevalence of Bacteria of Division TM7 in Human Subgingival Plaque and Their Association with Disease , 2003, Applied and Environmental Microbiology.

[84]  John B. Anderson,et al.  CDD: a curated Entrez database of conserved domain alignments , 2003, Nucleic Acids Res..

[85]  Raphael Gottardo,et al.  Lateral gene transfer and ancient paralogy of operons containing redundant copies of tryptophan-pathway genes in Xylella species and in heterocystous cyanobacteria , 2003, Genome Biology.

[86]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[87]  W. Moore,et al.  Gemmiger formicilis, n.gen., n.sp., an Anaerobic Budding Bacterium from Intestines , 1975 .