Tailoring the structural and optical properties of fabricated TiO2 thin films by O2 duty cycle in reactive gas-timing magnetron sputtering

[1]  R. Minikayev,et al.  TiO2 coating fabrication using gas injection magnetron sputtering technique by independently controlling the gas and power pulses , 2021 .

[2]  L. Kavan,et al.  Work Function of TiO2 (Anatase, Rutile, and Brookite) Single Crystals: Effects of the Environment , 2021 .

[3]  A. Miotello,et al.  Fabricating multilayer antireflective coating for near complete transmittance in broadband visible light spectrum , 2020 .

[4]  R. Chodun,et al.  The state of coating–substrate interfacial region formed during TiO2 coating deposition by Gas Injection Magnetron Sputtering technique , 2020 .

[5]  F. Challali,et al.  Investigation of the Influences of Post-Thermal Annealing on Physical Properties of TiO2 Thin Films Deposited by RF Sputtering , 2020, Semiconductors.

[6]  N. Chanlek,et al.  Spectroscopic study on amorphous tantalum oxynitride thin films prepared by reactive gas-timing RF magnetron sputtering , 2019, Applied Surface Science.

[7]  P. Buranasiri,et al.  Observations of the initial stages on reactive gas-timing sputtered TaO thin films by dynamic in situ spectroscopic ellipsometery , 2019, Optical Materials.

[8]  R. Chodun,et al.  Optical TiO2 layers deposited on polymer substrates by the Gas Injection Magnetron Sputtering technique , 2019, Applied Surface Science.

[9]  Hyoyeol Park,et al.  Optical properties of TiO2 thin films with crystal structure , 2018, Journal of Physics and Chemistry of Solids.

[10]  W. Jaegermann,et al.  The Work Function of TiO2 , 2018, Surfaces.

[11]  L. Hultman,et al.  Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak , 2018, Applied Surface Science.

[12]  I. Parkin,et al.  Chemical Vapor Deposition of Photocatalytically Active Pure Brookite TiO2 Thin Films , 2018 .

[13]  R. Kotnala,et al.  Nanostructured TiO 2 thin films prepared by RF magnetron sputtering for photocatalytic applications , 2017 .

[14]  David-Wei Zhang,et al.  Optical properties of thickness-controlled MoS 2 thin films studied by spectroscopic ellipsometry , 2017 .

[15]  L. Hultman,et al.  C 1s Peak of Adventitious Carbon Aligns to the Vacuum Level: Dire Consequences for Material's Bonding Assignment by Photoelectron Spectroscopy , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  N. Tabet,et al.  Properties of TiO2 thin films deposited by rf reactive magnetron sputtering on biased substrates , 2017 .

[17]  L. Nyborg,et al.  Surface chemistry of the titanium powder studied by XPS using internal standard reference , 2017 .

[18]  S. Porntheeraphat,et al.  Optical band engineering of metal-oxynitride based on tantalum oxide thin film fabricated via reactive gas-timing RF magnetron sputtering , 2016 .

[19]  T. Thongtem,et al.  Crystalline phases and optical properties of titanium dioxide films deposited on glass substrates by microwave method , 2016 .

[20]  Davood Raoufi,et al.  The annealing temperature dependence of anatase TiO2 thin films prepared by the electron-beam evaporation method , 2016 .

[21]  N. Chanlek,et al.  Commissioning of the soft x-ray undulator beamline at the Siam Photon Laboratory , 2016 .

[22]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm , 2015 .

[23]  H. Takamura,et al.  Low-temperature preparation of high-n TiO2 thin film on glass by pulsed laser deposition , 2015 .

[24]  John Robertson,et al.  Calculation of TiO2 Surface and Subsurface Oxygen Vacancy by the Screened Exchange Functional , 2015 .

[25]  Mukul Gupta,et al.  Spectroscopic ellipsometry characterization of amorphous and crystalline TiO2 thin films grown by atomic layer deposition at different temperatures , 2014 .

[26]  Xing Hu,et al.  Single material TiO2 double layers antireflection coating with photocatalytic property prepared by magnetron sputtering technique , 2014 .

[27]  T. Andreu,et al.  Slightly hydrogenated TiO2 with enhanced photocatalytic performance , 2014 .

[28]  G. Plesch,et al.  Characterization and hydrogen gas sensing properties of TiO2 thin films prepared by sol–gel method , 2012 .

[29]  X. Lv,et al.  Controlled synthesis of TiO2 mesoporous microspheres via chemical vapor deposition , 2012 .

[30]  N. Nuntawong,et al.  Characterization of inhomogeneity in TiO2 thin films prepared by pulsed dc reactive magnetron sputtering , 2011 .

[31]  V. Ramakrishnan,et al.  Effect of RF power and sputtering pressure on the structural and optical properties of TiO2 thin films prepared by RF magnetron sputtering , 2011 .

[32]  J. Rodríguez-Carvajal,et al.  Relation between crystallinity and chemical nature of surface on wettability: A study on pulsed laser deposited TiO2 thin films , 2011 .

[33]  E. Kim,et al.  Oblique angle deposition of TiO2 thin films prepared by electron-beam evaporation , 2010 .

[34]  J. Myoung,et al.  Photo-induced hydrophilic properties of reactive RF magnetron sputtered TiO2 thin films , 2010 .

[35]  N. Nuntawong,et al.  Dynamic in situ spectroscopic ellipsometric study in inhomogeneous TiO2 thin-film growth , 2010 .

[36]  Kinga Haubner,et al.  The route to functional graphene oxide. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  B. Hameed,et al.  The advancements in sol–gel method of doped-TiO2 photocatalysts , 2010 .

[38]  E. Le Bourhis,et al.  ZrOxNy decorative thin films prepared by the reactive gas pulsing process , 2009 .

[39]  Pichet Limsuwan,et al.  A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation , 2009 .

[40]  D. Barreca,et al.  TiO2 Thin Films by Chemical Vapor Deposition: An XPS Characterization , 2007 .

[41]  Weidong Zhou,et al.  Microstructured surface design for omnidirectional antireflection coatings on solar cells , 2007 .

[42]  F. Vaz,et al.  Reactive sputtering of TiOxNy coatings by the reactive gas pulsing process: Part II: The role of the duty cycle , 2007 .

[43]  T. Polcar,et al.  Modelling of Magnetron Sputtering of Tungsten Oxide with Reactive Gas Pulsing , 2007 .

[44]  D. J. Christie,et al.  Control of reactive sputtering processes , 2005 .

[45]  S. Berg,et al.  Fundamental understanding and modeling of reactive sputtering processes , 2005 .

[46]  J. Musil,et al.  Reactive magnetron sputtering of TiOx films , 2005 .

[47]  Byung-Teak Lee,et al.  Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating , 2004 .

[48]  P. Hung,et al.  Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody–Lorentz parameterized model , 2004 .

[49]  L. Miao,et al.  Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering , 2003 .

[50]  N. Martin,et al.  Nitrogen pulsing to modify the properties of titanium nitride thin films sputter deposited , 2002 .

[51]  Joshua M. Pearce,et al.  Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics , 2002, Journal of Applied Physics.

[52]  F. Lévy,et al.  Enhanced sputtering of titanium oxide, nitride and oxynitride thin films by the reactive gas pulsing technique , 2001 .

[53]  F. Lévy,et al.  High rate and process control of reactive sputtering by gas pulsing: the Ti O system , 2000 .

[54]  Dean-Mo Liu,et al.  Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films , 2000 .

[55]  Michael Vergöhl,et al.  Ex situ and in situ spectroscopic ellipsometry of MF and DC-sputtered TiO2 and SiO2 films for process control , 1999 .

[56]  D. Mergel,et al.  Nucleation and growth in TiO2 films prepared by sputtering and evaporation , 1994 .

[57]  Lijian Meng,et al.  Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures , 1993 .

[58]  T. Ohmi,et al.  Growth of native oxide on a silicon surface , 1990 .

[59]  L. Hultman,et al.  X-ray photoelectron spectroscopy: Towards reliable binding energy referencing , 2020, Progress in Materials Science.

[60]  L. Kuo,et al.  Optical properties of amorphous SiO 2 -TiO 2 multi-nanolayered coatings for 1064-nm mirror technology , 2018 .

[61]  D. Gonbeau,et al.  Systematic XPS studies of metal oxides, hydroxides and peroxides , 2000 .

[62]  I. Lindau,et al.  Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103 , 1985 .

[63]  O. Hunderi,et al.  Effective medium models for the optical properties of inhomogeneous materials. , 1981, Applied optics.