Thermal Stability and Flame Retardancy of Rigid Polyurethane Foams/Organoclay Nanocomposites

The thermal stability and flame retardancy of a new kind of rigid polyurethane (PU) foams/organoclay nanocomposites developed by our research group were investigated by using thermogravimetry analysis (TGA) and cone calorimeter test. Results indicate that compared with pure PU foams, rigid PU foams/organoclay composites show significantly enhanced thermal stability and flame retardancy. The reasons leading to the results were discussed in detail by relating with the morphology of the composites. The discussion suggests that the enhancement degree of thermal stability and flame retardancy of composites compared with that of PU foams coincides well with the sequences of gallery spacing of organoclay in the PU matrix.

[1]  Zhongbin Xu,et al.  Studies of ABS-graft-maleic anhydride/clay nanocomposites: Morphologies, thermal stability and flammability properties , 2006 .

[2]  F. Medellín-Rodríguez,et al.  Effect of some compatibilizing agents on clay dispersion of polypropylene-clay nanocomposites , 2006 .

[3]  Lei Song,et al.  Poly(propylene)/clay nanocomposites and their application in flame retardancy† , 2006 .

[4]  Yuan Hu,et al.  Flammability and thermal properties of high density polyethylene/paraffin hybrid as a form‐stable phase change material , 2006 .

[5]  Christopher W. Macosko,et al.  Nanoclay‐Modified Rigid Polyurethane Foam , 2005 .

[6]  G. Camino,et al.  Thermal and combustion behaviour of layered silicate–epoxy nanocomposites , 2005 .

[7]  Sadhan Jana,et al.  Properties of bulk-polymerized thermoplastic polyurethane nanocomposites , 2005 .

[8]  T. Zhao,et al.  Synthesis of bismaleimide‐modified novolac resin/clay nanocomposites using p‐phenylenediamine as swelling agent , 2005 .

[9]  J. Fernández,et al.  Influence of clay modification process in PA6-layered silicate nanocomposite properties , 2005 .

[10]  L. J. Lee,et al.  Polyurethane/clay nanocomposites foams: processing, structure and properties , 2005 .

[11]  A. Tidjani Polypropylene-graft-maleic anhydride-nanocomposites: II: fire behaviour of nanocomposites produced under nitrogen and in air , 2005 .

[12]  D. Khakhar,et al.  Hydraulic resistance of rigid polyurethane foams. III. Effect of variation of the concentration of catalysts on foam structure and properties , 2004 .

[13]  Yuan Hu,et al.  Preparation and Combustion Properties of Flame Retardant Nylon 6/Montmorillonite Nanocomposite , 2003 .

[14]  F. Chang,et al.  Conductivity enhancement mechanism of the poly(ethylene oxide)/modified‐clay/LiClO4 systems , 2002 .

[15]  V. Divjaković,et al.  Effect of Nano-and Micro-Silica Fillers on Polyurethane Foam Properties , 2002 .

[16]  Jin-Hae Chang,et al.  Nanocomposites of polyurethane with various organoclays: Thermomechanical properties, morphology, and gas permeability* , 2002 .

[17]  S. Bourbigot,et al.  Flammability of polyamide-6/clay hybrid nanocomposite textiles , 2002 .

[18]  K. Wei,et al.  High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders , 2001 .

[19]  K. Wei,et al.  Synthesis and characterization of novel segmented polyurethane/clay nanocomposites , 2000 .

[20]  Thomas J. Pinnavaia,et al.  Nanolayer Reinforcement of Elastomeric Polyurethane , 1998 .

[21]  S. Cooper,et al.  Infrared Studies of Segmented Polyurethan Elastomers. I. Hydrogen Bonding , 1970 .