Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware

We present parallel implementations of Newton–Raphson iterative and spectral based non-iterative solvers for single-crystal visco-plasticity models on a specialized computer hardware integrating a graphics-processing unit (GPU). We explore two implementations for the iterative solver on GPU multiprocessors: one based on a thread per crystal parallelization on local memory and another based on multiple threads per crystal on shared memory. The non-iterative solver implementation on the GPU hardware is based on a divide-conquer approach for matrix operations. The reduction of computational time for the iterative scheme was found to approach one order of magnitude. From detailed performance comparisons of the developed GPU iterative and non-iterative implementations, we conclude that the spectral non-iterative solver programed on a GPU platform is superior over the iterative implementation in terms of runtime as well as ease of implementation. It provides remarkable speedup factors exceeding three orders of magnitude over the iterative scalar version of the solver.

[1]  Jonathan D Hirst,et al.  Molecular Dynamics Simulations Using Graphics Processing Units , 2011, Molecular informatics.

[2]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[3]  M. Diehl,et al.  A spectral method solution to crystal elasto-viscoplasticity at finite strains , 2013 .

[4]  C. Tomé,et al.  Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium , 2012 .

[5]  Hamid Garmestani,et al.  Evolution of crystal orientation distribution coefficients during plastic deformation , 2003 .

[6]  Marko Knezevic,et al.  A high-performance computational framework for fast crystal plasticity simulations , 2014 .

[7]  Ricardo A. Lebensohn,et al.  Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: Application to low-symmetry metals , 2013 .

[8]  Jaroslaw Knap,et al.  A call to arms for task parallelism in multi‐scale materials modeling , 2011 .

[9]  M. Knezevic,et al.  Characterization of Crystallographic Texture and Intra-Grain Morphology in Cross-Rolled Tantalum , 2015, Metallurgical and Materials Transactions A.

[10]  David A. Patterson,et al.  Computer Architecture, Fifth Edition: A Quantitative Approach , 2011 .

[11]  T. Takaki,et al.  Simulation of Austenite-to-ferrite Transformation in Deformed Austenite by Crystal Plasticity Finite Element Method and Multi-phase-field Method , 2012 .

[12]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[13]  Lallit Anand,et al.  Single crystal and polycrystal elasto-viscoplasticity: Application to earing in cup drawing of F.C.C. materials , 1996 .

[14]  P. Van Houtte,et al.  Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials , 1994 .

[15]  Massimiliano Fatica,et al.  CUDA Fortran for Scientists and Engineers: Best Practices for Efficient CUDA Fortran Programming , 2013 .

[16]  S. Kalidindi,et al.  Application of microstructure sensitive design to structural components produced from hexagonal polycrystalline metals , 2008 .

[17]  Ben Ashbaugh,et al.  Khronos™ group , 2015, IWOCL.

[18]  H. Bunge Texture Analysis in Materials Science , 1982 .

[19]  Surya R. Kalidindi,et al.  Spectral calibration of crystal plasticity models , 2006 .

[20]  I. Beyerlein,et al.  Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models , 2014 .

[21]  Surya R. Kalidindi,et al.  Application of Microstructure Sensitive Design to FCC Polycrystals , 2007 .

[22]  I. Beyerlein,et al.  An elasto-plastic self-consistent model with hardening based on dislocation density, twinning and de-twinning: Application to strain path changes in HCP metals , 2015 .

[23]  I. Beyerlein,et al.  Modeling transients in the mechanical response of copper due to strain path changes , 2007 .

[24]  Surya R. Kalidindi,et al.  Representation of the orientation distribution function and computation of first-order elastic properties closures using discrete Fourier transforms , 2009 .

[25]  P. Dawson,et al.  Polycrystal plasticity modeling of bulk forming with finite elements over orientation space , 1995 .

[26]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[27]  M. Knezevic,et al.  High-Pressure Double Torsion as a Severe Plastic Deformation Process: Experimental Procedure and Finite Element Modeling , 2015, Journal of Materials Engineering and Performance.

[28]  Jitesh H. Panchal,et al.  Key computational modeling issues in Integrated Computational Materials Engineering , 2013, Comput. Aided Des..

[29]  I. Beyerlein,et al.  Anomalous Basal Slip Activity in Zirconium under High-strain Deformation , 2013 .

[30]  R. Asaro,et al.  Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .

[31]  G. Proust,et al.  Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements , 2013 .

[32]  R. Lebensohn,et al.  Mechanical anisotropy and grain interaction in recrystallized aluminum , 2002 .

[33]  R. Mccabe,et al.  A new implementation of the spectral crystal plasticity framework in implicit finite elements , 2015 .

[34]  Surya R. Kalidindi,et al.  Fast computation of first-order elastic–plastic closures for polycrystalline cubic-orthorhombic microstructures , 2007 .

[35]  Richard Von Mises,et al.  Mechanik der plastischen Formänderung von Kristallen , 1928 .

[36]  G. Proust,et al.  Modeling texture, twinning and hardening evolution during deformation of hexagonal materials , 2007 .

[37]  I. Beyerlein,et al.  Texture evolution in two-phase Zr/Nb lamellar composites during accumulative roll bonding , 2014 .

[38]  J. Pośpiech,et al.  Statistical Analysis of Single Grain Orientation Data Generated from Model Textures , 1994 .

[39]  I. Beyerlein,et al.  A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model , 2015 .

[40]  Rainald Löhner,et al.  Running unstructured grid‐based CFD solvers on modern graphics hardware , 2011 .

[41]  I. Beyerlein,et al.  A strain-rate and temperature dependent constitutive model for BCC metals incorporating non-Schmid effects: Application to tantalum–tungsten alloys , 2014 .

[42]  Frédéric Barlat,et al.  Orthotropic yield criterion for hexagonal closed packed metals , 2006 .

[43]  R. Mccabe,et al.  Spectral database solutions to elasto-viscoplasticity within finite elements: Application to a cobalt-based FCC superalloy , 2015 .

[44]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[45]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[46]  Laurent Capolungo,et al.  Anisotropic stress–strain response and microstructure evolution of textured α-uranium , 2012 .

[47]  B. Peeters,et al.  Taylor ambiguity in BCC polycrystals: a non-problem if substructural anisotropy is considered , 2001 .

[48]  Surya R. Kalidindi,et al.  Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: Applications to process design for targeted performance , 2010 .

[49]  I. Beyerlein,et al.  Texture evolution and enhanced grain refinement under high-pressure-double-torsion , 2014 .

[50]  I. Beyerlein,et al.  A multi-scale model for texture development in Zr/Nb nanolayered composites processed by accumulative roll bonding , 2014 .

[51]  Surya R. Kalidindi,et al.  Delineation of first-order closures for plastic properties requiring explicit consideration of strain hardening and crystallographic texture evolution , 2008 .

[52]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[53]  Matti Ristinmaa,et al.  Accelerating crystal plasticity simulations using GPU multiprocessors , 2014 .

[54]  Michal Mrozowski,et al.  Generation of large finite-element matrices on multiple graphics processors , 2013 .

[55]  Sartaj Sahni,et al.  Strassen's Matrix Multiplication on GPUs , 2011, 2011 IEEE 17th International Conference on Parallel and Distributed Systems.

[56]  Eric Darve,et al.  Assembly of finite element methods on graphics processors , 2011 .

[57]  I. Beyerlein,et al.  A dislocation density based crystal plasticity finite element model: Application to a two-phase polycrystalline HCP/BCC composites , 2014 .

[58]  I. Beyerlein,et al.  A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes: Application to beryllium , 2013 .

[59]  Donald J. Patterson,et al.  Computer organization and design: the hardware-software interface (appendix a , 1993 .

[60]  L. Anand,et al.  Crystallographic texture evolution in bulk deformation processing of FCC metals , 1992 .

[61]  M. Knezevic,et al.  A dislocation density based elasto-plastic self-consistent model for the prediction of cyclic deformation: Application to AA6022-T4 , 2015 .

[62]  I. Beyerlein,et al.  Material-based design of the extrusion of bimetallic tubes , 2014 .

[63]  Sergio Idelsohn,et al.  OpenCL‐based implementation of an unstructured edge‐based finite element convection‐diffusion solver on graphics hardware , 2012 .

[64]  U. F. Kocks,et al.  Application of polycrystal plasticity to sheet forming , 1994 .

[65]  Thomas Zacharia,et al.  Using high performance Fortran for parallel programming , 1998 .

[66]  I. Beyerlein,et al.  Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr , 2015 .

[67]  Surya R. Kalidindi,et al.  Elastic–plastic property closures for hexagonal close-packed polycrystalline metals using first-order bounding theories , 2007 .

[68]  T. Bieler,et al.  Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications , 2010 .

[69]  Ricardo A. Lebensohn,et al.  Modeling mechanical response and texture evolution of α-uranium as a function of strain rate and temperature using polycrystal plasticity , 2013 .

[70]  Philip Eisenlohr,et al.  An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials , 2012 .

[71]  P. Maudlin,et al.  Computational anisotropic plasticity for high-rate forming applications , 1996 .

[72]  I. Beyerlein,et al.  Explicit incorporation of deformation twins into crystal plasticity finite element models , 2015 .

[73]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[74]  I. Beyerlein,et al.  In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg–Li–(Al) alloys: An uncommon tension–compression asymmetry , 2015 .

[75]  U. F. Kocks,et al.  The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals , 1984 .

[76]  G. C. Johnson,et al.  Three-dimensional deformation process simulation with explicit use of polycrystal plasticity models , 1993 .

[77]  S. Li,et al.  Non-uniform microstructure and texture evolution during equal channel angular extrusion , 2005 .

[78]  Richard D. Hornung,et al.  Embedded polycrystal plasticity and adaptive sampling , 2008 .

[79]  I. Beyerlein,et al.  Enhancement of orientation gradients during simple shear deformation by application of simple compression , 2015 .

[80]  R. A. Lebensohn,et al.  Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations , 2007 .

[81]  Marko Knezevic,et al.  Three orders of magnitude improved efficiency with high‐performance spectral crystal plasticity on GPU platforms , 2014 .

[82]  Nathan R. Barton,et al.  The use of discrete harmonics in direct multi-scale embedding of polycrystal plasticity , 2015 .

[83]  D. Fullwood,et al.  Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals , 2008 .

[84]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[85]  R. Penelle,et al.  Estimation of the Minimum Grain Number for the Orientation Distribution Function Calculation from Individual Orientation Measurements on Fe–3%Si and Ti–4Al–6V Alloys , 1995 .

[86]  Brent L. Adams,et al.  Grain size and orientation distributions: Application to yielding of α-titanium , 2009 .

[87]  J. Segurado,et al.  Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements , 2012 .

[88]  M. Knezevic,et al.  Procedures for reducing large datasets of crystal orientations using generalized spherical harmonics , 2015 .

[89]  Carlos N. Tomé,et al.  A dislocation-based constitutive law for pure Zr including temperature effects , 2008 .

[90]  Christoph Fahrenson,et al.  Effect of age hardening on the deformation behavior of an Mg–Y–Nd alloy: In-situ X-ray diffraction and crystal plasticity modeling , 2015 .

[91]  Ricardo A. Lebensohn,et al.  Finite Element Implementation of a Self‐Consistent Polycrystal Plasticity Model: Application to a‐Uranium , 2012 .

[92]  M. Knezevic,et al.  Enhanced microstructural homogeneity in metal-matrix composites developed under high-pressure-double-torsion , 2015 .

[93]  Surya R. Kalidindi,et al.  Deformation twinning in AZ31: Influence on strain hardening and texture evolution , 2010 .

[94]  E. Voce,et al.  The relationship between stress and strain for homogeneous deformations , 1948 .

[95]  Surya R. Kalidindi,et al.  Spectral Approaches for the Fast Computation of Yield Surfaces and First-Order Plastic Property Closures for Polycrystalline Materials with Cubic-Triclinic Textures , 2010 .

[96]  David A. Patterson,et al.  Computer organization and design (2nd ed.): the hardware/software interface , 1997 .

[97]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[98]  S. Kalidindi,et al.  Crystal plasticity simulations using discrete Fourier transforms , 2009 .

[99]  D. Gaston,et al.  Crystal plasticity with Jacobian-Free Newton–Krylov , 2013 .