Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts.

A computer branching model is used to analyze cellular evolution. Attention is given to certain key amino acids and nucleotide residues (ferredoxin, 5s ribosomal RNA, and c-type cytochromes) because of their commonality over a wide variety of cell types. Each amino acid or nucleotide residue is a sequence in an inherited biological trait; and the branching method is employed to align sequences so that changes reflect substitution of one residue for another. Based on the computer analysis, the symbiotic theory of cellular evolution is considered the most probable. This theory holds that organelles, e.g., mitochondria and chloroplasts invaded larger bodies, e.g., bacteria, and combined functions to form eucaryotic cells.

[1]  T. R. Mason,et al.  3-Gyr-old stromatolites from South Africa , 1977, Nature.

[2]  L. Margulis,et al.  Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution , 1976, Nature.

[3]  P. I. Payne,et al.  Evidence for the nucleotide sequence of 5-S rRNA from the flowering plant Secale cereale (Rye). , 1976, European journal of biochemistry.

[4]  S. Yamashita,et al.  Activation of rat liver choline kinase by polyamines , 1976, FEBS letters.

[5]  H. Matsubara,et al.  Amino acid sequence of the major component of Nostoc muscorum ferredoxin. , 1976, Journal of Biochemistry (Tokyo).

[6]  A. Aitken Protein evolution in cyanobacteria , 1976, Nature.

[7]  D. Hall,et al.  Amino acid sequence of a four-iron-four-sulphur ferredoxin isolated from Bacillus stearothermophilus. , 1976, The Biochemical journal.

[8]  D. Oehler,et al.  How Old Are the Eukaryotes? , 1976, Science.

[9]  R. Lewin Prochlorophyta as a proposed new division of algae , 1976, Nature.

[10]  G. Fox,et al.  Nucleotide sequence of Clostridium pasteurianum S5 rRNA , 1976, FEBS letters.

[11]  B. Jordan,et al.  Nucleotide sequence of Drosophila melanogaster 5S RNA: Evidence for a general 5S RNA model , 1976, FEBS letters.

[12]  R. Dickerson,et al.  The cytochrome fold and the evolution of bacterial energy metabolism. , 1976, Journal of molecular biology.

[13]  H. Matsubara,et al.  Amino acid sequence of the major component of Aphanothece sacrum ferredoxin. , 1976, Journal of biochemistry.

[14]  T. Meyer,et al.  Primary structure determination of two cytochromes c2: close similarity to functionally unrelated mitochondrial cytochrome C. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Hall,et al.  Modification of the automated sequence determination as applied to the sequence determination of the Spirulina maxima ferredoxin. , 1975, Biochemistry.

[16]  R. Planta,et al.  Nucleotide sequence of 5-S RNA from Bacillus licheniformis. , 1975, European journal of biochemistry.

[17]  M. Haniu,et al.  The amino acid sequence of the Azotobacter vinelandii flavodoxin. , 1975, Biochemical and biophysical research communications.

[18]  A. Aitken Prokaryote-eukaryote relationship and the amino acid sequence of plastocyanin from Anabaena variabilis. , 1975, The Biochemical journal.

[19]  H. Matsubara,et al.  Amino acid sequence of spirulina platensis ferredoxin: A far divergency of blue‐green algal ferredoxins , 1975, FEBS letters.

[20]  K. K. Rao,et al.  The amino acid sequence of ferredoxin II from Chlorobium limicola, a photosynthetic green bacterium. , 1975, Biochemistry.

[21]  J. Schopf,et al.  Precambrian Paleobiology: Problems and Perspectives , 1975 .

[22]  J. Ramshaw,et al.  The amino acid sequence of plastocyanin from spinach. (Spinacia oleracea L.). , 1975, The Biochemical journal.

[23]  T. Stadtman,et al.  Amino acid sequence determination of the Clostridium M-E ferredoxin and a comment on the role of the aromatic residues in the clostridial ferredoxins. , 1974, Biochemistry.

[24]  D. Boulter,et al.  Studies of the Amino Acid Sequence of Plastocyanin from Rumex obtusifolius (Broad-Leaved Dock) , 1974 .

[25]  K. Nishikawa,et al.  Structure and function of 5S ribosomal ribonucleic acid from Torulopsis utilis. II. Partial digestion with ribonucleases and derivation of the complete sequence. , 1974, Journal of biochemistry.

[26]  J. Ramshaw,et al.  The amino acid sequence of plastocyanin from Vicia faba L. (broad bean). , 1974, The Biochemical journal.

[27]  T. Uzzell,et al.  Mitochondria and plastids as endosymbionts: a revival of special creation? , 1974, American scientist.

[28]  M. Brunori,et al.  A temperature-jump study of the reaction between azurin and cytochrome c-551 from Pseudomonas aeruginosa. , 1974, The Biochemical journal.

[29]  R. Raff,et al.  The non symbiotic origin of mitochondria. , 1972, Science.

[30]  P. Raven A Multiple Origin for Plastids and Mitochondria , 1970, Science.

[31]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[32]  P. Cloud Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. , 1968, Science.

[33]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[34]  M. O. Dayhoff,et al.  Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive Amino Acid Sequences , 1966, Science.