Pseudo‐Spline Subdivision Surfaces
暂无分享,去创建一个
[1] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[2] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[3] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[4] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[5] T. Eirola. Sobolev characterization of solutions of dilation equations , 1992 .
[6] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[7] Leif Kobbelt,et al. √3-subdivision , 2000, SIGGRAPH.
[8] Peter Schröder,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..
[9] Jos Stam,et al. A Unified Subdivision Scheme for Polygonal Modeling , 2001, Comput. Graph. Forum.
[10] Jos Stam,et al. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..
[11] Joe Warren,et al. Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .
[12] Peter Schröder,et al. Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..
[13] Jörg Peters,et al. Shape characterization of subdivision surfaces--basic principles , 2004, Comput. Aided Geom. Des..
[14] Neil A. Dodgson,et al. Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices , 2006, Comput. Graph. Forum.
[15] Zuowei Shen,et al. PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .
[16] Weiyin Ma,et al. A Method for Constructing Interpolatory Subdivision Schemes and Blending Subdivisions , 2007, Comput. Graph. Forum.
[17] Matthias Zwicker,et al. Radiance caching for participating media , 2008, TOGS.
[18] Jarek Rossignac,et al. J-splines , 2008, Comput. Aided Des..
[19] Jörg Peters,et al. Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.
[20] Xiaonan Luo,et al. Deducing interpolating subdivision schemes from approximating subdivision schemes , 2008, SIGGRAPH 2008.
[21] Nira Dyn,et al. Polynomial reproduction by symmetric subdivision schemes , 2008, J. Approx. Theory.
[22] Neil A. Dodgson,et al. Numerical Checking of C1 for Arbitrary Degree Quadrilateral Subdivision Schemes , 2009, IMA Conference on the Mathematics of Surfaces.
[23] Niranjan Damera-Venkata,et al. Display supersampling , 2009, ACM Trans. Graph..
[24] M. Sabin,et al. NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.
[25] Qi Chen,et al. Analyzing midpoint subdivision , 2009, Comput. Aided Geom. Des..
[26] Thomas J. Cashman,et al. Beyond Catmull–Clark? A Survey of Advances in Subdivision Surface Methods , 2012, Comput. Graph. Forum.
[27] M. Floater,et al. Exact regularity of pseudo-splines , 2012, 1209.2692.
[28] Weiyin Ma,et al. A unified interpolatory subdivision scheme for quadrilateral meshes , 2013, TOGS.
[29] Ravi Ramamoorthi,et al. Interactive albedo editing in path-traced volumetric materials , 2013, TOGS.