Pseudo‐Spline Subdivision Surfaces

Pseudo‐splines provide a rich family of subdivision schemes with a wide range of choices that meet various demands for balancing the approximation power, the length of the support, and the regularity of the limit functions. Special cases of pseudo‐splines include uniform odd‐degree B‐splines and the interpolatory 2n‐point subdivision schemes, and the other pseudo‐splines fill the gap between these two families. In this paper we show how the refinement step of a pseudo‐spline subdivision scheme can be implemented efficiently using repeated local operations, which require only the data in the direct neighbourhood of each vertex, and how to generalize this concept to quadrilateral meshes with arbitrary topology. The resulting pseudo‐spline surfaces can be arbitrarily smooth in regular mesh regions and C1 at extraordinary vertices as our numerical analysis reveals.

[1]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[2]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[4]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[5]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[6]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[7]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[8]  Peter Schröder,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..

[9]  Jos Stam,et al.  A Unified Subdivision Scheme for Polygonal Modeling , 2001, Comput. Graph. Forum.

[10]  Jos Stam,et al.  On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..

[11]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[12]  Peter Schröder,et al.  Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..

[13]  Jörg Peters,et al.  Shape characterization of subdivision surfaces--basic principles , 2004, Comput. Aided Geom. Des..

[14]  Neil A. Dodgson,et al.  Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices , 2006, Comput. Graph. Forum.

[15]  Zuowei Shen,et al.  PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .

[16]  Weiyin Ma,et al.  A Method for Constructing Interpolatory Subdivision Schemes and Blending Subdivisions , 2007, Comput. Graph. Forum.

[17]  Matthias Zwicker,et al.  Radiance caching for participating media , 2008, TOGS.

[18]  Jarek Rossignac,et al.  J-splines , 2008, Comput. Aided Des..

[19]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[20]  Xiaonan Luo,et al.  Deducing interpolating subdivision schemes from approximating subdivision schemes , 2008, SIGGRAPH 2008.

[21]  Nira Dyn,et al.  Polynomial reproduction by symmetric subdivision schemes , 2008, J. Approx. Theory.

[22]  Neil A. Dodgson,et al.  Numerical Checking of C1 for Arbitrary Degree Quadrilateral Subdivision Schemes , 2009, IMA Conference on the Mathematics of Surfaces.

[23]  Niranjan Damera-Venkata,et al.  Display supersampling , 2009, ACM Trans. Graph..

[24]  M. Sabin,et al.  NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.

[25]  Qi Chen,et al.  Analyzing midpoint subdivision , 2009, Comput. Aided Geom. Des..

[26]  Thomas J. Cashman,et al.  Beyond Catmull–Clark? A Survey of Advances in Subdivision Surface Methods , 2012, Comput. Graph. Forum.

[27]  M. Floater,et al.  Exact regularity of pseudo-splines , 2012, 1209.2692.

[28]  Weiyin Ma,et al.  A unified interpolatory subdivision scheme for quadrilateral meshes , 2013, TOGS.

[29]  Ravi Ramamoorthi,et al.  Interactive albedo editing in path-traced volumetric materials , 2013, TOGS.