Explicit Solutions of the Coupled Bogoyavlensky Lattice 1(2) Hierarchy

By means of the discrete zero curvature representation, the coupled Bogoyavlensky lattice 1(2) hierarchy related to a $$3\times 3$$ matrix problem is derived. Resorting to the characteristic polynomial of Lax matrix for the lattice hierarchy, we introduce a trigonal curve $$\mathcal {K}_{m-1}$$ of arithmetic genus $$m-1$$ and construct the related Baker–Akhiezer function and meromorphic function. By analyzing the asymptotic expansion of the meromorphic function, the algebro-geometric solutions to the stationary coupled Bogoyavlensky lattice 1(2) are obtained. Moreover, the explicit theta function representations for the coupled Bogoyavlensky lattice hierarchy are given with the help of the Abelian differential.

[1]  G. Teschl,et al.  Algebro-Geometric Quasi-Periodic Finite-Gap Solutions of the Toda and Kac-van Moerbeke Hierarchies , 1995 .

[2]  X. Geng,et al.  Long-Time Asymptotics for the Spin-1 Gross–Pitaevskii Equation , 2021 .

[3]  Wen-Xiu Ma,et al.  Symbolic Computation of Lump Solutions to a Combined Equation Involving Three Types of Nonlinear Terms , 2020, East Asian Journal on Applied Mathematics.

[4]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[5]  Wen-Xiu Ma,et al.  Trigonal curves and algebro-geometric solutions to soliton hierarchies I , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  X. Geng,et al.  The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices , 2017, Transactions of the American Mathematical Society.

[7]  Y. Suris Integrable discretizations of the Bogoyavlensky lattices , 1996 .

[8]  Fritz Gesztesy,et al.  ALGEBRO-GEOMETRIC SOLUTIONS OF THE BOUSSINESQ HIERARCHY , 1999 .

[9]  X. Geng,et al.  Quasi-periodic solutions of the Belov-Chaltikian lattice hierarchy , 2017 .

[10]  O. Bogoyavlenskii SOME CONSTRUCTIONS OF INTEGRABLE DYNAMICAL SYSTEMS , 1988 .

[11]  Wen-Xiu Ma,et al.  Complexiton solutions of the Toda lattice equation , 2004 .

[12]  K. Hikami,et al.  The Hamiltonian Structure of the Bogoyavlensky Lattice , 1999 .

[13]  Jing Ping Wang Recursion Operator of the Narita–Itoh–Bogoyavlensky Lattice , 2011, 1111.6874.

[14]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[15]  Fritz Gesztesy,et al.  A New Approach to the Boussinesq Hierarchy , 1999 .

[16]  Xianguo Geng,et al.  Algebro–geometric constructions of the discrete Ablowitz–Ladik flows and applications , 2003 .

[17]  O. Bogoyavlensky Integrable discretizations of the KdV equation , 1988 .

[18]  C. M. Khalique,et al.  Determining lump solutions for a combined soliton equation in (2+1)-dimensions , 2020 .

[19]  Helge Holden,et al.  Soliton Equations and Their Algebro-Geometric Solutions: The AKNS Hierarchy , 2003 .

[20]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[21]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[22]  Shunichi Tanaka,et al.  Analogue of Inverse Scattering Theory for the Discrete Hill's Equation and Exact Solutions for the Periodic Toda Lattice , 1976 .

[23]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[24]  Xianguo Geng,et al.  A Vector General Nonlinear Schrödinger Equation with (m+n) Components , 2019, J. Nonlinear Sci..

[25]  Jiao Wei,et al.  Quasi-periodic solutions to the hierarchy of four-component Toda lattices , 2016 .

[26]  Huan Liu,et al.  The Nonlinear Steepest Descent Method to Long-Time Asymptotics of the Coupled Nonlinear Schrödinger Equation , 2018, J. Nonlinear Sci..

[27]  C. David Levermore,et al.  Finite genus solutions to the Ablowitz‐Ladik equations , 2010 .

[28]  X. Geng,et al.  On a vector long wave‐short wave‐type model , 2019, Studies in Applied Mathematics.

[29]  Y. Kodama Solutions of the dispersionless Toda equation , 1990 .

[30]  Xianguo Geng,et al.  Rogue periodic waves of the sine-Gordon equation , 2020, Appl. Math. Lett..

[31]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations. IV. Bäcklund Transformation for the Discrete-Time Toda Equation , 1978 .

[32]  O. Bogoyavlensky Five constructions of integrable dynamical systems connected with the Korteweg-de Vries equation , 1988, Acta Applicandae Mathematicae.

[33]  A. Roy Chowdhury,et al.  The quasiperiodic solutions to the discrete nonlinear Schrödinger equation , 1987 .

[34]  Joe W. Harris,et al.  Principles of Algebraic Geometry: Griffiths/Principles , 1994 .

[35]  B. Fuchssteiner,et al.  Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure , 1991 .

[36]  Xianguo Geng,et al.  Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy , 2014 .

[37]  V. Papageorgiou,et al.  On some integrable discrete-time systems associated with the Bogoyavlensky lattices , 1996 .