Powellite-Rich Glass-Ceramics: A Spectroscopic Study by EPR and Raman Spectroscopy

The aim of this study is to better understand the incorporation of rare earth elements in glass-ceramics of nuclear interest. We synthesized glass-ceramics from glasses in the system SiO 2-B 2 O 3-Na 2 O-CaO-Al 2 O 3-MoO 3-Gd 2 O 3 by various heat treatments. Gadolinium is used both as a spectroscopic probe and as a minor actinide surrogate. Glass-ceramics contain only one crystalline phase in the bulk: powellite (CaMoO 4). This phase can incorporate Gd 3+ and Na + ions by substitutions on the Ca site. We demonstrated that the charge compensation by Na + favors the rare earth elements incorporation. Moreover, the incorporated elements do not seem to be randomly distributed into the powellite structure.

[1]  B. Boizot,et al.  Microstructure of Powellite-Rich Glass-Ceramics: A Model System for High Level Waste Immobilization , 2012 .

[2]  J. Crum,et al.  Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products , 2011 .

[3]  B. Boizot,et al.  Synthesis of powellite-rich glasses for high level waste immobilization , 2011 .

[4]  S. Schuller,et al.  Liquid–Liquid Phase Separation Process in Borosilicate Liquids Enriched in Molybdenum and Phosphorus Oxides , 2011 .

[5]  G. Panczer,et al.  CaMOO4 in a Molybdenum Rich Borosilicate Glass-Ceramic: A Spectroscopic Study , 2010 .

[6]  Clément Mendoza Caractérisation et comportement sous irradiation de phases powellites dopées terres rares : applications au comportement à long terme de matrices de confinement de déchets nucléaires , 2010 .

[7]  S. Kaczmarek,et al.  Solid-state synthesis and characterization of new cadmium and rare-earth metal molybdato-tungstates Cd0.25RE0.50(MoO4)0.25(WO4)0.75 (RE = Pr, Nd, Sm–Dy) , 2010 .

[8]  Wendan Cheng,et al.  Scheelite-type NaEr(MoO4)2 , 2010, Acta crystallographica. Section E, Structure reports online.

[9]  D. Neuville,et al.  Structural investigations of borosilicate glasses containing MoO3 by MAS NMR and Raman spectroscopies , 2010 .

[10]  A. G. S. Filho,et al.  Raman spectroscopy study of Na2MoO4·2H2O and Na2MoO4 under hydrostatic pressure , 2009 .

[11]  M. Magnin Etude des processus de démixtion et de cristallisation au sein de liquides fondus borosilicatés riches en oxyde de molybdène , 2009 .

[12]  Chunhua Cui,et al.  Room-temperature synthesis of crystallized luminescent CaMoO4 film by a simple chemical method , 2008 .

[13]  E. Longo,et al.  Different origins of green-light photoluminescence emission in structurally ordered and disordered powders of calcium molybdate. , 2008, The journal of physical chemistry. A.

[14]  J. Gale,et al.  Subsolidus phase relations in Ca2Mo2O8-NaEuMo2O8-powellite solid solution predicted from static lattice energy calculations and Monte Carlo simulations. , 2008, Physical chemistry chemical physics : PCCP.

[15]  I. Ardelean,et al.  EPR study of molybdenum-lead-phosphate glasses , 2008 .

[16]  A. Grandjean,et al.  Phase separation and crystallization of borosilicate glass enriched in MoO3, P2O5, ZrO2, CaO , 2008 .

[17]  C. Gervais,et al.  Effect of molybdenum on the structure and on the crystallization of SiO2-Na2O-CaO-B2O3 glasses. , 2007 .

[18]  M. Li,et al.  Optical multi-sites of Nd3+-doped CaMoO4 induced by Nb5+ charge compensator , 2006 .

[19]  G. Tendeloo,et al.  KNd(MoO4)2 : A new incommensurate modulated structure in the scheelite family , 2006 .

[20]  G. Tendeloo,et al.  Ag1/8Pr5/8MoO4: An incommensurately modulated scheelite-type structure , 2006 .

[21]  T. Zarubina,et al.  EPR and magnetic properties of Gd3+ in oxide glasses , 2004 .

[22]  A. Grandjean,et al.  Heat treatments versus microstructure in a molybdenum-rich borosilicate , 2004 .

[23]  I. Edelmanb,et al.  EPR and magnetic properties of Gd 3 + in oxide glasses , 2004 .

[24]  J. Phalippou,et al.  Phase separation and crystallisation induced by adding molybdenum and phosphorus to a soda-lime-silica glass , 2004 .

[25]  F. Brandt,et al.  Trivalent actinide coprecipitation with powellite (CaMoO4): Secondary solid solution formation during HLW borosilicate-glass dissolution , 2004 .

[26]  G. Kourouklis,et al.  Temperature and pressure dependence of Raman-active phonons of CaMoO4: an anharmonicity study , 2002 .

[27]  E. Cavalli,et al.  Optical spectroscopy of CaMoO4:Dy3+ single crystals , 2002 .

[28]  N. Hyatt,et al.  Molybdenum in Nuclear Waste Glasses - Incorporation and Redox state , 2002 .

[29]  I. Ardelean,et al.  Structure and magnetic properties of Bi2O3–GeO2–Gd2O3 glasses , 2000 .

[30]  Xavier Orlhac Etude de la stabilité thermique du verre nucléaire. Modélisation de son évolution à long terme , 1999 .

[31]  T. Pradeep,et al.  Vibrational spectroscopic studies of FeClMoO4, Na2MoO4 and Na2MoO4·2H2O/D2O , 1997 .

[32]  G. Kourouklis,et al.  A high pressure Raman study of calcium molybdate , 1995 .

[33]  L. Kozeeva,et al.  Raman study of cation distribution in the scheelite-like double molybdates and tungstates , 1994 .

[34]  M. Tomozawa,et al.  Effects of MoO3, on Phase Separation of Na2O‐B2O3‐SiO2 Glasses , 1981 .

[35]  R. Landry ESR and Optical Absorption Study of Mo3+ in a Phosphate Glass , 1968 .

[36]  S. P. S. Porto,et al.  Raman Spectra of CaWO 4 , SrWO 4 , CaMoO 4 , and SrMoO 4 , 1967 .

[37]  M. Schieber,et al.  CRYSTAL GROWTH AND MAGNETIC SUSCEPTIBILITIES OF SOME RARE-EARTH SODIUM MOLYBDENUM SCHEELITES , 1964 .